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MEASURABLE FUNCTIONS 

Measurable Function: An extended real valued function f defined on a measurable set E is said to be 

measurable function if {x| f(x) >  𝛼} is measurable for each real number 𝛼. 

2.1 Theorem. A constant function with a measurable domain is measurable. 

Proof: Let f be a constant function with a measurable domain E and Let f : E→ 𝑅 be a constant function 

i.e., f(x) = k ∀ 𝑥 ∈ 𝐸 𝑎𝑛𝑑 𝑘 𝑖𝑠 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡. 

To show that {x| f(x) >  𝛼} is measurable for each real number 𝛼. 

{x| f(x) >  𝛼} = {
𝐸,    𝑘 > 𝛼
𝜑,    𝑘 = 𝛼
𝜑,   𝑘 < 𝛼

 

Since both 𝜑 𝑎𝑛𝑑 𝐸 are measurable, it follows that the set {x| f(x) >  𝛼} and hence f is measurable. 

2.2 Theorem. Let f be an extended real valued function defined on a measurable set E, Then f is 

said to be measurable (Lebesgue function) if for any real 𝜶 any one of the following four 

conditions is satisfied. 

(a) {x| f(x) >  𝛼} is measurable 

(b) {x| f(x) ≥  𝜶} is measurable 

(c) {x| f(x) <  𝛼} is measurable 

(d) {x| f(x) ≤ 𝜶} is measurable. 

Proof: We show that these four conditions are equivalent. First of all we show that (a) and (b) are 

equivalent. Since 

                   {x| f(x) >  𝛼} = {x| f(x) ≤ 𝛼}c 

And also we know that complement of a measurable set is measurable, therefore (a) ⟹(d) and 

conversely. 

Similarly since (b) and (c) are complement of each other, (c) is measurable if (b) is measurable and 

conversely. 

Therefore, it is sufficient to prove that (a) ⟹(b)  and conversely. 

Firstly we show that (b) ⟹ (𝑎). 

The set {x| f(x) ≥  𝛼} is  given to be measurable. 

Now  
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        {x| f(x) >  𝛼} =
1n





{x| f(x) ≥  𝛼 +
1

𝑛
} 

But by (b), {x| f(x) ≥  𝛼 +
1

𝑛
} is measurable. Also we know that countable union of measurable sets is 

measurable. Hence {x| f(x) > 𝛼} is measurable which implies that (b) ⟹(a). 

Conversely, let (a) holds. We have  

                                         {x| f(x) ≥   𝛼} =
1n





{x| f(x) ≥  𝛼 −
1

𝑛
} 

The set {x| f(x) >  𝛼 −
1

𝑛
} is measurable by (a). Moreover, intersection of measurable sets is also 

measurable .  Hence {x| f(x) ≥   𝛼} is also measurable . Thus (a) ⟹ (b). 

Hence the four conditions are equivalent. 

2.3 Remark: We can say that f is measurable function if for any real number 𝜶, any of the four 

conditions in the above theorem holds. 

2.4 Lemma. If 𝜶 is an extended real number then these four conditions imply that  {x| f(x) =  𝜶} is 

also measurable. 

Proof. Let 𝛼 be a real number, then 

                           {x| f(x) =  𝛼} =   {x| f(x) ≥   𝛼} ∩ {x| f(x) ≤ 𝛼}. 

Since {x| f(x) ≥   𝛼} and {x| f(x) ≤ 𝛼} are measurable by conditions (b) and (d), the set {x| f(x) =  𝛼} is 

measurable being the intersection of measurable sets. 

Suppose  𝛼 =  ∞. Then {x| f(x) =  ∞}   =
1n





{x| f(x) >  𝑛} 

Which is measurable by the condition (a) and the fact intersection of measurable sets is measurable. 

Similarly when  = −∞, then  

             {x| f(x) = −∞}   =
1n





{x| f(x) < −𝑛}, which is again measurable by conditions (c).Hence the 

results follows. 

2.5 Theorem: If f is measurable function on each of the sets in a countable collection {Ei} of 

disjoint measurable sets, then f is measurable on E = ⋃ 𝑬𝒊𝒊 . 

Proof: Let E = ⋃ 𝐸𝑖𝑖  . Then E is measurable being countable union of measurable sets is measurable.  

Let 𝛼 be any real number. 

Consider the set {x∈ 𝐸| f(x) >  𝛼} = ⋃ {𝑥 ∈ 𝐸𝑖: 𝑓(𝑥) >  𝛼}𝑖  is measurable. 

Because f is measurable on each Ei. 

 ⋃ {𝑥 ∈ 𝐸𝑖: 𝑓(𝑥) >  𝛼}𝑖  is measurable. 
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 {x∈ 𝐸| f(x) >  𝛼} is measurable. 

Hence f is measurable on E. 

2.6 Theorem: If f is measurable function on E and 𝑬𝟏 ⊆ 𝑬 is measurable set then f is a measurable 

function on E1. 

Proof: Let 𝛼 be any real number. 

Consider the set {x∈ 𝐸1| f(x) >  𝛼} = {x∈ 𝐸| f(x) >  𝛼}∩ 𝐸1 is measurable. 

2.7 Theorem.  If f and g are measurable functions on a common domain E, then the set 

A= {x∈ E: f(x)< g(x)} is measurable. 

Proof. For each rational number r, define 

                   𝐴𝑟 = { x∈ E: f(x) < r < g(x)} 

Or we can write 

                     𝐴𝑟 = { x∈ E: f(x)< r}∩ {x∈ E: g(x)> r} 

Since f and g are measurable on E, so the two sets on R.H.S. are measurable sets is measurable. 

Now, we observe that 

                         {x∈E: f(x) <g(x)} = ⋃ 𝐴𝑟𝑟∈𝑄  

Since the rationals are countable, so A is countable union of measurable sets and so is measurable. 

This proves the theorem. 

2.8 Theorem. A continuous function defined on a measurable set is measurable. 

Proof. Let f be a continuous function defined on measurable set E.  Let 𝛼 be any real number. We now 

claim that {x ∈ E : f(x) ≥  𝛼 } is closed. 

              Let A= { x ∈ E: f(x) ≥  𝛼 }           (1) 

To prove that A is closed, it is sufficient to show that 𝐴′ ⊆ 𝐴.              (2) 

 𝐴′ being derived set of A. 

Let 𝑥0 ∈ 𝐴′ be arbitrary element. Then 𝑥0 ∈ 𝐴′ implies 𝑥0 is limit point of A. 

It implies that there exist a sequence {𝑥𝑛} whose elements 𝑥𝑛 ∈ 𝐴 such that 

lim
𝑛→∞

𝑥𝑛 = 𝑥0 

Moreover, f is continuous at 𝑥0; it follows that by definition of continuity 𝑥𝑛 → 𝑥0  implies 𝑓(𝑥𝑛)→

 𝑓(𝑥0)                 (3) 

By (2), we see that 𝑥𝑛 ∈ A   for all n ∈ N. 

⇒ f(𝑥𝑛) ≥  𝛼  for all n∈ N. 

⇒ lim
𝑛→∞

𝑓𝑥𝑛 ≥  𝛼 
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⇒ 𝑓(𝑥0) ≥  𝛼 by virtue of (3) 

⇒ 𝑥0 ∈ 𝐴 by (1) 

Further any 𝑥0 ∈ 𝐴′ implies 𝑥0 ∈ 𝐴 

⇒ 𝐴′ ⊆ 𝐴 

⇒ A is closed 

⇒A is measurable 

⇒{x ∈ E: f(x) ≥ 𝛼 } is measurable. 

Hence a continuous function f is measurable on E. 

Converse of above theorem is not true, that is, A measurable function need not be continuous. 

2.9 Example.  Consider a function f: R → [0,1]  

defined by f(x) = {  
𝟏   𝒊𝒇 𝟎 ≤ 𝒙 ≤ 𝟏
𝟎   𝒊𝒇 𝒐𝒕𝒉𝒆𝒓𝒘𝒊𝒔𝒆  

. 

Clearly function is not continuous since 0 is the point of discontinuity. 

For any real number 𝛼, 

                 {x ∈N: f(x) > 𝛼 }= {
𝜑 ,      𝛼 ≥ 1 
𝑅,        𝛼 < 0

 [0,1),   𝛼 ≤ 0 < 1
  

Since R, 𝜑, [0,1) are measurable implies f is measurable function on E. 

2.10 Theorem.  Let f  be a function defined on a measurable set E then f is measurable iff for any 

open set G in R the inverse image f-1 (G) is measurable set. 

Proof. Let f be a measurable function and let G be any set in R. Since every open sets can be written 

as countable union of disjoint open intervals. 

Suppose, G = ⋃ 𝐼𝑛𝑛  = ⋃ (𝑎𝑛, 𝑏𝑛)𝑛  

Then f-1 (G) = f-1(⋃ 𝐼𝑛𝑛 ) = ⋃  { 𝑓−1(𝐼𝑛𝑛 )} 

                                       = ⋃ { 𝑥: 𝑓(𝑥) ∈ 𝐼𝑛}𝑛  

                                      = ⋃  {x ∶  f(x)  ∈ (𝑎𝑛, 𝑏𝑛)}𝑛  

but  {x : f(x) ∈ (𝑎𝑛, 𝑏𝑛)} = {x : 𝑎𝑛 < 𝑓(𝑥) < 𝑏𝑛} 

                                        = {x : 𝑓(𝑥) > 𝑎𝑛}∩ {x : 𝑓(𝑥) < 𝑏𝑛} 

Since f is measurable function. So both sets on R.H.S. are measurable and hence 

 {x : f(x) ∈ (𝑎𝑛, 𝑏𝑛)} is measurable. 

Again f-1 (G) is measurable.  [ since countable union  of measurable sets is measurable ] 
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Conversely:-  Let f-1 (G)  be measurable for every open set G in R. We have to prove that f is 

measurable function. 

Take G = (𝛼,∞) where 𝛼 is any real no. 

Then f-1(𝛼,∞) is measurable  

 that is, {x : f(x) ∈ (𝛼,∞)} is measurable  

that is , {x : f(x) > 𝛼} is measurable. 

Thus f is measurable function. 

2.11 Theorem.  Let f be continuous and g be measurable function then fog is measurable. 

Proof. Let 𝛼 be any real number then  

     {x : fog(x) > 𝛼} = {x : f(g(x)) > 𝛼} 

                               =  {x : f(g(x)) ∈ (𝛼,∞)}                   

                               =  {x : g(x) ∈ f-1(𝛼,∞)}. 

Now, (𝛼,∞) is open subset of R and f is continuous implies f-1(𝛼,∞) is open set. 

 Hence, it can be written as countable union of disjoint open intervals say  

                    f-1(𝛼,∞) = ⋃ 𝐼𝑛𝑛  = ⋃ (𝑎𝑛, 𝑏𝑛)𝑛 . 

     Therefore, 

                   {x : fog(x) > 𝛼} =  {x : g(x) ∈ ⋃ 𝐼𝑛𝑛 } = g -1 (⋃ 𝐼𝑛)𝑛  

                                              = ⋃ 𝑔−1 (𝐼𝑛)𝑛  

                                              = ⋃  {x ∶  g(x)  ∈  𝐼𝑛}𝑛  

                                             = ⋃  {x ∶  g(x)  ∈  (𝑎𝑛, 𝑏𝑛)}𝑛  

                                             = ⋃  {x ∶ 𝑎𝑛 <  𝑔(x) < 𝑏𝑛)}𝑛  

                                       = ⋃  {x ∶  g(x) > 𝑎𝑛)}𝑛 ∩ ⋃  {x ∶  g(x) < 𝑏𝑛)}𝑛 . 

Since g is measurable function. Both sets on R.H.S. are measurable and their intersection is measurable. 

Also countable union  of measurable sets is measurable. Hence the result. 

2.12 Definition. A function f is said to be a step function iff  

f(x) = Ci , 𝜉𝑖−1 < x <  𝜉𝑖for some subdivision of [a, b] and some constants Ci . 

Example: A function f : [0, 1] → 𝑅 defined as f(x) = {
𝛼,   𝑎 ≤ 𝑥 ≤ 𝑐
𝛽,   𝑐 ≤ 𝑥 ≤ 𝑏

 where 𝛼, 𝛽 are constant, f is a step 

function. 

Remark: Every step function is a measurable function. 
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2.13 Theorem. For any real no c and two measurable real- valued functions, f and g, the functions  

f +c, cf, f+g, f-g,  fg and f/g (g≠ 𝟎 ), |𝒇| are all measurable. 

Proof. We are given that f is measurable function and c ais any real number. Then for any real number 𝛼 

                    {x| f(x) +𝑐 >  𝛼} =  {x| f(x) >  𝛼 − 𝑐}  

But {x| f(x) >  𝛼 − 𝑐} is measurable by the condition (a) of the definition. Hence                     

 {x| f(x) +𝑐 >  𝛼}  and so | f(x) +𝑐 is measurable.we next consider the function cf . in case c= 0, cf is 

the constant function 0 and hence is measurable since every constant function is continuous and so 

measurable. In case c > 0 we have  

                                   {x| cf(x) >  𝛼} =  {x| f(x) >
α

c
}, and so measurable.  

In case c < 0, we have {x| cf(x) >  𝑟} ={x| f(x)<
𝑟

𝑐
 } and so measurable. 

Now if f and g are two measurable real valued functions defined on the same domain, we shall show that 

f+g is measurable. To show that it is sufficient to show that the set  

{x| f(x)+𝑔(𝑥) > 𝛼} is measurable. 

if  f(x) +g(x)> 𝛼, then | f(x) >  𝛼 − 𝑔(𝑥) and by he cor. of the axiom of Archimedes there is a rational 

number r such that  𝛼 − 𝑔(𝑥) <r<f(x) 

since the functions f and g are measurable , the sets {x| f(x) >  𝑟} and {x| f(x) >  𝛼 − 𝑟} are measurable. 

Therefore, there intersection Sr={x| f(x) >  𝛼 − 𝑐}∩ {x| f(x) >  𝛼 − 𝑟}  also measurable. 

It can be shown that  {x|f(x)+𝑔(𝑥) > 𝛼 } =∪ {Sr | r is rational}  

Since the set of rational is countable and countable union of measurable sets is measurable , the set 

 ∪ {Sr | r is rational} and hence {x|f(x)+𝑔(𝑥) > 𝛼 }is measurable which proves that  

f(x) +g(x) is measurable. From this part it follows that f- g = f (-g) is also measurable, since when g is 

measurable (-g) is also measurable. Next we consider fg. 

The measurability of fg follows that from the identity fg =
1

2

2 2 2[( ) ]f g f g   , if we prove that f2 

is measurable when f is measurable. For this it is sufficient to prove that  

{x|∈ 𝐸|f2(x) >  𝛼},  𝛼 is real number, is measurable.  

Let 𝛼 be a negative real number. Then it is clear that the set {x|f2(x) >  𝛼} = E (domain of the 

measurable function f). But E is measurable by the definition of f. Hence {x|f2(x) >  𝛼} is measurable 

when 𝛼 < 0. 

Now let 𝛼 ≥ 0, then {x|f2(x) >  𝛼}= {x| f(x) > √𝛼} ∪{x| f(x) < −√𝛼}. 

Since f is measurable, it follows from this equality that {x|f2(x) >  𝛼} is measurable for 𝛼 ≥ 0. 

Hence f2  is also measurable when f is also measurable. Therefore, the theorem follows from the above 

identity, since measurability of f and g imply the measurability of f+g. 
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Consider  
𝑓

𝑔
(g≠ 0) = f. 

1

𝑔
 

First we have to prove that 
1

𝑔
  is measurable. 

Consider the set {𝑥 ∶ (
1

𝑔
) (𝑥) > 𝛼} = {𝑥 ∶  

1

𝑔(𝑥)
> 𝛼}  

             =

{
 
 

 
 

{𝑥: 𝑔(𝑥) > 0}𝑖𝑓 𝛼 = 0

{𝑥: 𝑔(𝑥) > 0} ∩ {𝑥: 𝑔(𝑥) <
1

𝛼
} 𝑖𝑓 𝛼 > 0

{𝑥: 𝑔(𝑥) > 0} ∪ {{𝑥: 𝑔(𝑥) > 0} ∩ {𝑥: 𝑔(𝑥) <
1

𝛼
}} 𝑖𝑓 𝛼 < 0

 

 Since g is measurable in each case ,i.e., {𝑥 ∶ (
1

𝑔
) (𝑥) > 𝛼}is measurable. 

 
1

𝑔
 is measurable. 

Since f and 
1

𝑔
 are measurable. 

 
𝑓

𝑔
 is measurable. 

Now If f is measurable then |f| is also  measurable. 

It suffices to prove that measurability of the set {x| f(x) >  𝛼}= E (domain of f) 

But E is assumed to be measurable. Hence {x| f(x) >  𝛼}={x| f(x) >  𝛼}∪{x| f(x)< −𝛼 } 

The right hand side of the equality is measurable since f is measurable. Hence {x| f(x) >  𝛼}is 

measurable. Hence |f| is measurable. 

2.14 Remark: Converse of (vii) is not true. 

Example: Let P be a non-measurable subset of [0, 1) = E 

Define a function f : E→ R as 

f(x) = {
𝟏   𝒊𝒇 𝒙 ∈ 𝑷

−𝟏   𝒊𝒇 𝒙 𝒏𝒐𝒕 𝒃𝒆𝒍𝒐𝒏𝒈𝒔 𝒕𝒐 𝑷
 

 f is not measurable because {𝑥: 𝑓(𝑥) > 0} =  {𝑥: 𝑓(𝑥) = 1} = 𝑃 𝑤ℎ𝑖𝑐ℎ 𝑖𝑠 𝑛𝑜𝑛 − 𝑚𝑒𝑎𝑠𝑢𝑟𝑎𝑏𝑙𝑒. 

Also, for any real 𝛼, {𝑥: |𝑓|(𝑥) > 𝛼} = {𝑥: |𝑓(𝑥)| > 𝛼} = {
𝜑, 𝑖𝑓 𝛼 ≥ 1
𝐸, 𝑖𝑓 𝛼 < 1

 

Since E and 𝜑 are measurable. 

 {𝑥: |𝑓|(𝑥) > 𝛼} 𝑖𝑠 𝑚𝑒𝑎𝑠𝑢𝑟𝑎𝑏𝑙𝑒. 

2.15 Theorem. Let  
1{ }n nf 


 be  a  sequence of measurable functions. Then sup{f1,f2,…,fn}, inf 

{f1,f2,…,fn}, sup,inf , lim limn n
n nn

f and f are measurable. 

Proof. Define a function M(x) =  𝑠𝑢𝑝{𝑓1(𝑥), 𝑓2(𝑥),… , 𝑓𝑛(𝑥)} we shall show that  

{x| M(x)> 𝛼}is measurable. In fact {x| M(x)> 𝛼}= ⋃ {𝑥: 𝑓𝑖(𝑥) > 𝛼}𝑛
𝑖  
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Since each fi is measurable, each of the set {x| fi(x)> 𝛼}is measurable and therefore their union is also 

measurable. Hence {x| M(x)> 𝛼} and so M(x) is measurable. Similarly we define the function m(x) = 

inf {f1,f2,,,,fn}, since {x| m(x)< 𝛼} = ⋃ {𝑥: 𝑓𝑖(𝑥) < 𝛼}𝑛
𝑖  and  

since {x| fi(x)< 𝛼}is measurable on account of the the measurability of fi, it follows that {x| m(x)< 𝛼} 

and so  m(x) is measurable . Define a function M’(x) = sup ( )n
n

f x = sup{f1,f2,,,,fn} 

We shall show that the set {x| M’(x)> 𝛼} is measurable for any real 𝛼. 

Now {x| M’(x)> 𝛼}= ⋃ {𝑥: 𝑓𝑛(𝑥) > 𝛼}∞
𝑛=1  is measurable, since each fn  is measurable. 

Similarly if we define m’(x) = inf ( )n
n

f x , then {x| m’(x)< 𝛼}= ⋃ {𝑥: 𝑓𝑛(𝑥) < 𝛼}∞
𝑛=1  and therefore 

measurability of fn  implies that of m’(x). Now since 𝑙𝑖𝑚̅̅̅̅̅𝑓𝑛 =
𝑖𝑛𝑓
𝑛

𝑠𝑢𝑝
𝑘 ≥ 𝑛

𝑓𝑘 and  

𝑙𝑖𝑚𝑓𝑛 =
𝑠𝑢𝑝
𝑛

𝑖𝑛𝑓
𝑘 ≥ 𝑛

𝑓𝑘, the upper  and lower limit are measurable. 

2.16 Corollary: If {fn} is a sequence of measurable functions converging to f. Then f is also 

measurable. 

Proof: Since{fn} converges to f ,i.e., lim
𝑛→∞

𝑓𝑛 = 𝑓 

Then 𝑙𝑖𝑚̅̅̅̅̅𝑓𝑛 = 𝑙𝑖𝑚𝑓𝑛 = lim
𝑛→∞

𝑓𝑛 

i.e., f =  𝑙𝑖𝑚̅̅̅̅̅𝑓𝑛 = 𝑙𝑖𝑚𝑓𝑛 

Hence f is measurable because 𝑙𝑖𝑚̅̅̅̅̅𝑓𝑛  𝑎𝑛𝑑 𝑙𝑖𝑚𝑓𝑛𝑎𝑟𝑒 𝑚𝑒𝑎𝑠𝑢𝑟𝑎𝑏𝑙𝑒. 

2.17 Corollary: The set of points on which a sequence {fn} of measurable functions converges is 

measurable. 

Proof: By above theorem 𝑙𝑖𝑚̅̅̅̅̅𝑓𝑛  𝑎𝑛𝑑 𝑙𝑖𝑚𝑓𝑛𝑎𝑟𝑒 𝑚𝑒𝑎𝑠𝑢𝑟𝑎𝑏𝑙𝑒. 

 𝑙𝑖𝑚̅̅̅̅̅𝑓𝑛 − 𝑙𝑖𝑚𝑓𝑛 𝑖𝑠 𝑚𝑒𝑎𝑠𝑢𝑟𝑎𝑏𝑙𝑒. 

𝑇ℎ𝑒𝑟𝑒𝑓𝑜𝑟𝑒, {𝑥: [𝑙𝑖𝑚𝑓𝑛 − 𝑙𝑖𝑚𝑓𝑛](𝑥) = 𝛼} 𝑖𝑠 𝑚𝑒𝑎𝑠𝑢𝑟𝑎𝑏𝑙𝑒 ∀𝛼. 

𝐼𝑛 𝑃𝑎𝑟𝑡𝑖𝑐𝑢𝑙𝑎𝑟, 𝑓𝑜𝑟 𝛼 = 𝑐 

{𝑥: [𝑙𝑖𝑚𝑓𝑛 − 𝑙𝑖𝑚𝑓𝑛](𝑥) = 0} 𝑖𝑠 𝑚𝑒𝑎𝑠𝑢𝑟𝑎𝑏𝑙𝑒. 
𝑖.e.,  

{𝑥: [𝑙𝑖𝑚𝑓𝑛(𝑥) = 𝑙𝑖𝑚𝑓𝑛(𝑥)]} 𝑖𝑠 𝑚𝑒𝑎𝑠𝑢𝑟𝑎𝑏𝑙𝑒. 
𝑖.e., set of these points for which{fn}converges is measurable. 

2.18 Definition. Let f and g be measurable functions. Then we define 

   𝑓+= Max (f, 0) 

                            𝑓− = Max (-f, 0)  

                           f ∨g =  
𝑓+𝑔 +|𝑓−𝑔|

2
    i.e. Max (f, g)    and 

                        f ∧g =  
𝑓+𝑔 −|𝑓−𝑔|

2
    i.e. min (f, g) 
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2.19 Theorem. Let f be a measurable function. Then  f


and 𝑓−  are both measurable. 

Proof.  Let us suppose that f > 0 . Then we have  

f = f


 − 𝑓−  (i) 

Now let us take f to be negative. 

 Then                          f


=  Max (f, 0) = 0,                                                                       (ii) 

                                  f


 =  Max (-f, 0) = -f 

Therefore on subtraction f = f


 −𝑓−  

In casef = 0 , then f


= 0, 𝑓− = 0.                                                                                   (iii) 

Therefore f = f


 −𝑓−  

Thus for all f we have, f = f


 −𝑓−    

Also adding the components of (i) we have 

                             f =  |f|  = f


 +𝑓−                                                                               (v) 

since f is positive. And from (ii) when f is negative we have 

f


 +𝑓−    = 0 -𝑓−  = 𝑓−  = |f|                                                                                          (vi) 

In case f is zero, then  

f


 +𝑓−  = 0 + 0 = 0 = |f|  (vii) 

That is for all f, we have  

|f|  = f


 +𝑓−  (viii) 

Adding (iv) and (viii) we have f + |f| = 2 f


, 

f


= 
1

2
(f + |f| )                                                                                                                    (ix) 

Similarly on subtracting we obtain   f


 = 
1

2
(f − |f| )                                                         (x) 

Since measurability of f implies the measurability of | f | it is obvious from (ix) and (x) that f


and f


 are 

measurable. 
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2.20 Theorem. If f and g are two measurable functions, then f ∨g and f ∧g are measurable. 

Proof. We  know  that 

                        f∨g =  
𝑓+𝑔 +|𝑓−𝑔|

2
 

                    

                    f ∧g =  
𝑓+𝑔 −|𝑓−𝑔|

2
 

Now measurability of f _ measurability of |f|. Also if f and g are measurable, then f+g, f-g are 

measurable. Hence f∨g and f ∧g are measurable. 

2.21 Definition. Characteristic function of a set E is defined by ( )

1,

0,
E X

x E

x E


 
  

 
 

This is also known as indicator function. 

2.22 Examples of measurable function  

Example. Let E be a set of rationals in [0,1]. Then the characteristic function ( )

1,

0,
E X

x E

x E


 
  

 
 is 

measurable. 

Proof. For the set of rationals in the given interval, we have ( )

1,

0,
E X

x E

x E


 
  

 
 

It is sufficient to prove that { x | 
( )E X >  𝛼} is measurable for any real 𝛼. 

Let us suppose first  𝑡ℎ𝑎𝑡 𝛼 ≥ 1. Then { x | 
( )E X >  𝛼} ={ x | 

( )E X >  1} 

Hence the set { x | 
( )E X >  𝛼}  is empty in this very case. But outer measure of any empty set is zero. 

Hence for 𝛼 ≥ 1, the set { x | 
( )E X >  𝛼} and so

( )E X  is measurable . 

Further let 0≤ 𝛼 ≤ 1. Then { x | 
( )E X >  𝛼} = E 

But E is countable and therefore measurable. Hence 
( )E X  is measurable. 

Lastly, let𝛼 ≤ 0. Then { x | 
( )E X >  𝛼} = [0,1] and therefore measurable. Hence the result. 

2.23 Theorem. Characteristic function A  is measurable if and only if A is measurable. 

Proof. Let A be measurable. Then 
1,

( )
0,

A

x A
x

x A


 
  

 
 

Hence it is clear from the definition that domain of A   is A ∪Ac which is measurable due to the 

measurability of A. Therefore, if we prove that the  
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set {x | 
( )A x > 𝛼} is measurable for any real 𝛼, we are through. 

Let 𝛼 ≥0 . Then {x |
( )A x >  }= {x |

( )A x = 1}=A(by the definition of Characteristic function.) 

But A is given to be measurable. Hence for 𝛼 ≥0. The set  {x |
( )A x > 𝛼 } is measurable. 

Now let us take 𝛼 < 0 . Then {x | 
( )A x >  }= A∪AC  

Hence {x | 
( )A x >  } is measurable for 𝛼 < 0 also, since A ∪AC has been proved to be measurable. 

Hence if A is measurable, then A   is also measurable. Conversely, let us suppose that 
( )A x  is 

measurable. That is,  

the set {x | 
( )A x > 𝛼 } is measurable for any real 𝛼. 

Let 𝛼 ≥0 . Then {x | 
( )A x >  }= {x | 

( )A x = 1}= A 

Therefore, measurability of{x |
( )A x >  } implies that of the set A for 𝛼 ≥0 . Now consider 𝛼 < 0. Then 

{x | 
( )A x >  }= A∪AC 

Thus measurability 
( )A x  of implies measurability of the set A∪AC which imply A is measurable. 

2.24 Simple Function: Let f be a real valued function defined on X. If the range of f is finite. We say 

that f is a simple function. 

Let E⊆X and put  ( )

1,

0,
E X

x E

x E


 
  

 
 

Suppose the range of f consists of the distinct number c1, c2, …, cn. 

Let Ei = {𝑥: 𝑓(𝑥) = 𝑐𝑖}(𝑖 = 1, 2, … , 𝑛) 

Then f = ∑ 𝑐𝑖
𝑛
𝑖=1 𝜒𝐸𝑖 

i.e., every simple function is a finite linear combination of characteristic function. It is clear that f is 

measurable if and only if the sets E1, E2, …, En are measurable. 

2.25 Remarks:  

1. Every step function is a simple function. 

2. Every simple function is measurable. 

Proof: Let f be a simple function defined as above. 

Then we have 

f(x) = ∑ 𝑐𝑖
𝑛
𝑖=1 𝜒𝐸𝑖(x) 

       = 𝑐1𝜒𝐸1(𝑥) + 𝑐2𝜒𝐸2(𝑥) + ⋯+ 𝑐𝑛𝜒𝐸𝑛(𝑥) 

∴ 𝑓(𝑥) =  𝑐1, 𝑥 ∈ 𝐸1 

𝑓(𝑥) =  𝑐2, 𝑥 ∈ 𝐸2 

∴ 𝑓(𝑥) =  𝑐𝑖, 𝑥 ∈ 𝐸𝑖 
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∴ 𝐸𝑖 = {𝑥: 𝑓(𝑥) = 𝑐𝑖} 

Since each Ei is measurable. Thus 𝜒𝐸𝑖 is measurable because 𝜒𝐴 is measurable if and only if A is 

measurable. 

Hence f is measurable. 

3. Characteristic function of measurable set is a simple function. 

4. Product of the simple function and finite linear combination of simple functions is again a 

simple function. 

2.26 Theorem. (Approximation Theorem). For every non-negative measurable function f, there 

exists a non-negative non-decreasing sequence {fn } of simple functions such that 𝐥𝐢𝐦
𝒏→∞

𝒇𝒏(𝒙) = 𝒇(𝒙), 

x ∈E 

In the general case if we do not assume non-negativeness of f , then we say For every measurable 

function f, there exists a sequence {fn }, n ∈N of simple function which converges (pointwise) to f . i.e. 

“Every measurable function can be approximated by a sequence of simple functions.” 

Proof. Let us assume that f(x) ≥0 and x ∈E . Construct a sequence 

fn(x) = {
𝑖−1

2𝑛
, 𝑓𝑜𝑟 

𝑖−1

2𝑛
≤ 𝑓(𝑥) <

𝑖

2𝑛
𝑓𝑜𝑟 𝑖 = 1,2  , 𝑛2𝑛

𝑛,     𝑓(𝑥) ≥ 𝑛
}  for every n ∈N. 

If we take n = 1, then 

                     

        f1 (x)   =    {
𝑖−1

2
, 𝑓𝑜𝑟 

𝑖−1

2
≤ 𝑓(𝑥) <

𝑖

2
𝑓𝑜𝑟 𝑖 = 1,2 

1,     𝑓(𝑥) ≥ 1
}   

That is, f1(x) = {

0, 𝑓𝑜𝑟 0 ≤ 𝑓(𝑥) <
1

2
 

1

2
,     𝑓𝑜𝑟 

1

2
≤ 𝑓(𝑥) < 1

1   𝑓𝑜𝑟 𝑓(𝑥) ≥ 1

} 

Similarly taking n = 2, we obtain 

f2(x) = {
𝑖−1

4
, 𝑓𝑜𝑟 

𝑖−1

4
≤ 𝑓(𝑥) <

𝑖

4
 𝑓𝑜𝑟 𝑖 = 1,2, , ,8 

2,     𝑓(𝑥) ≥ 2
} 

That is,  

f2(x)=  

{
 
 
 

 
 
 0 𝑓𝑜𝑟  0 ≤ 𝑓(𝑥) <

1

4
1

4
 𝑓𝑜𝑟 

1

4
 ≤ 𝑓(𝑥) <

1

2
…………………
……………… . .

7

4
 𝑓𝑜𝑟 

7

4
 ≤ 𝑓(𝑥) < 2

2 𝑓𝑜𝑟 𝑓(𝑥) ≥ 2 }
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Similarly we can write f3(x) (x) and so on. Clearly all fn are positive whenever f is positive and also it is 

clear that fn  ≤ fn+1. Moreover fn takes only a finite number of values. Therefore {fn} is a sequence of 

non-negative, non decreasing functions which assume only a finite number of values. 

Let us denote 

                          Eni = 𝑓−1 [
𝑖−1

𝑛
,
𝑖

𝑛
] = {𝑥 ∈ 𝐸| 

𝑖−1

2
≤ 𝑓(𝑥) <

𝑖

2
} 

and  

               En = 𝑓−1[𝑛.∞)  =  {𝑥 ∈ 𝐸|𝑓(𝑥) ≥ 𝑛} 

Both of them are measurable. Let 

                                                 

                                          
2

1

1

2

n

n ni

n

n E En
i

i
f n 




       for every n ∈N . 

Now  
2

1

1

2

n

ni

n

En
i

i





 is measurable, since 

ni
E   has been shown to be measurable and characteristic 

function of a measurable set is measurable. Similarly 
nE  is also measurable since 

nE
 is 

measurable. Hence each fn is measurable. Now we prove the convergence of this sequence. 

Let f(x) < ∞. That is f is bounded. Then for some n we have  

                     
𝑖−1

2𝑛
≤ 𝑓(𝑥) <

𝑖

2𝑛
 

                   
𝑖−1

2𝑛
 - 
𝑖−1

2𝑛
≤ 𝑓(𝑥) -   

𝑖−1

2𝑛
<

𝑖

2𝑛
  

                   0 ≤f(x) -   
𝑖−1

2𝑛
<

𝑖

2𝑛
 

                   0 ≤f(x) – fn(x) <
𝑖

2𝑛
 (by the def of fn (x)) 

                  f(x) ≤ fn (x) < 𝜀 

or|𝑓(𝑥) − 𝑓𝑛(𝑥)| ≤
1

2𝑛
< 𝜀∀𝑛 ≥ 𝑚 𝑎𝑛𝑑 𝑥 ∈ 𝐸. 

since m does not depend upon point. 

Therefore, convergence is uniform. 

Let us suppose now that f is not bounded. Then f(x) = ∞ 

 f(x) ≥ 𝑛 𝑓𝑜𝑟 𝑒𝑣𝑒𝑟𝑦 𝑛 ∈ 𝑁 

But fn (x) = n  

 lim
𝑛→∞

𝑓𝑛(𝑥) =  ∞ = 𝑓(𝑥). 
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When we do not assume non-negativeness of the function then since we know that f


 and f


 

are both non-negative, we have by what we have proved above 

lim '( )n
n

f x



                                                                                                          (i) 

lim ''( )n
n

f x



                                                                                                          (ii) 

where ∅𝑛
′(𝑥) and ∅𝑛

′′(𝑥) are simple functions. Also we have proved already that 

                                        f = f


 −𝑓−                                               

Now from (i) and (ii) we have 

f


 −𝑓−   =       lim '( )n
n

x


   − lim ''( )n
n

x


 

                  =        lim( '( ) ''( ))n n
n

x x 


  

                 =           lim ( )n
n

x


 

(since the difference of two simple functions is again a simple function). Hence the theorem. 

We now introduce the terminology “almost everywhere” which will be frequently used in the Sequel. 

2.27 Definition. A statement is said to hold almost everywhere in E if and only if it holds 

everywhere in E except possibly at a subset D of measure zero. 

(a) Two functions f and g defined on E are said to be equal almost everywhere in E iff  

f(x) =g(x) everywhere except a subset D of E of measure zero. 

(b) A function defined on E is said to be continuous almost everywhere in E if and only  

if   ther  

2.28 Theorem. (a) If f is a measurable function on the set E and 𝐸1 ⊆ 𝐸is measured set, then f is a 

measurable function on 𝐸1. 

(b) If f is a measurable function on each of the sets in a countable collection{Ei } of disjoint measurable 

sets, then f is measurable. 

Proof. (a) For any real 𝛼, we have {x ∈ 𝐸1, f(x) > 𝛼 } = { x ∈E; f(x) > 𝛼 } ∩E1. The result follows as 

the set on the right-hand side is measurable. 

(b)Write E = 
1

i

i

E




, Clearly, E, being the union of measurable set is measurable. The result now 

follows, since for each real 𝛼, we have  

E = { x ∈E: f(x) > 𝛼 } = { x ∈
1

i

i

E




: f(x) > 𝛼 } 



42 Measure and Integration Theory 

2.29 Theorem. Let f and g be any two functions which are equal almost everywhere in E. If f is 

measurable so is g. 

Proof. Since f is measurable, for any real, the set {x | f(x) >  } is measurable. We shall show that the set 

{x | g(x) >  } is measurable. To do so we put  

E1 = {x | f(x) >  } and E2 = {x | g(x) > 𝛼 }. Consider the sets   

E1 – E2 and E2 – E1.  

These are subsets of {𝑥: 𝑓(𝑥) ≠ 𝑔(𝑥)} [
∵ 𝑥 ∈ 𝐸1 − 𝐸2 ⟹ 𝑥 ∈ 𝐸1𝑎𝑛𝑑 𝑥 ∉ 𝐸2
𝑓(𝑥) > 𝛼, 𝑔(𝑥) ≯ 𝛼 ⟹ 𝑓(𝑥) ≠ 𝑔(𝑥)

] 

But f = g a.e.  

 m{𝑥: 𝑓(𝑥) ≠ 𝑔(𝑥)} = 0 

𝐸1 − 𝐸2 ⊆ {𝑥: 𝑓(𝑥) ≠ 𝑔(𝑥)} 

m(𝐸1 − 𝐸2) ≤ m{𝑥: 𝑓(𝑥) ≠ 𝑔(𝑥)} = 0 

 m(𝐸1 − 𝐸2) ≤ 0 But m(𝐸1 − 𝐸2) ≥ 0 

 m(𝐸1 − 𝐸2) = 0 

Similarly m(𝐸2 − 𝐸1) =0 

∴ m(𝐸2 − 𝐸1) = 0 = m(𝐸1 − 𝐸2) 

 (𝐸1 − 𝐸2) and (𝐸2 − 𝐸1) are measurable. 

 E2 = [E1 ∪( E2 – E1)] - ( E1 – E2)  

Since E1,  E2 – E1 and  ( E1 – E2)
C are measurable therefore it follows that E2 is measurable. Hence the 

theorem is proved. 

2.30. Corollary. Let {fn} be a sequence of measurable functions such that lim n
n

f f


 almost 

everywhere. Then f is a measurable function. 

Proof. We have already proved that if {fn} is a sequence of measurable functions then lim n
n

f


 is 

measurable. Also, it is given that lim n
n

f


 = f a.e. Therefore, using the above theorem, it follows that f is 

measurable. 

2.31 Definition:  (Restriction of f to E1) 

Let f be a function defined on E, then the function f1 defined on E1 contained in E .i.e., E1 ⊆ E by f1(x) = 

f(x), x ∈ E1 is called restriction of f to E1 and denoted by f/ E1. 

2.32 Exercise : Let f be a measurable function defined on E, then its restriction to E1 is also 

measurable where  E1 is a measurable subset of E. 

Solution : Let f1 = f/ E1 i.e., f1 is restriction of f to E1. 

Let 𝛼 𝑏𝑒 𝑎𝑛𝑦 𝑟𝑒𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟. 

{x ∈ 𝐸1: f1(x) > 𝛼} = { x ∈E1: f(x) > 𝛼 } [∵  𝑓1 = 𝑓 𝑜𝑛 𝐸1] 
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            = { x ∈E: f(x) > 𝛼 } ∩ E1is measurable on E and E1 is also measurable and 

intersection of measurable sets is measurable. Hence f1 is measurable on E1. 

2.33Exercise:𝐋𝐞𝐭 𝐟 𝐛𝐞 𝐚 𝐦𝐞𝐚𝐬𝐮𝐫𝐚𝐛𝐥𝐞 𝐟𝐮𝐧𝐜𝐭𝐢𝐨𝐧 𝐝𝐞𝐟𝐢𝐧𝐞𝐝 𝐨𝐧 𝒘𝒉𝒆𝒓𝒆 𝑬𝟏 𝒂𝒏𝒅 𝑬𝟐 𝒂𝒓𝒆 𝒎𝒆𝒂𝒔𝒖𝒓𝒂𝒃𝒍𝒆. 

𝑻𝒉𝒆𝒏 𝒕𝒉𝒆 𝒇𝒖𝒏𝒄𝒕𝒊𝒐𝒏 𝒇 𝒊𝒔 𝒎𝒆𝒂𝒔𝒖𝒓𝒂𝒃𝒍𝒆 𝒐𝒏 𝑬𝟏𝑼𝑬𝟐 𝒊𝒇𝒇
𝒇

𝑬𝟏
𝒂𝒏𝒅

𝒇

𝑬𝟐
 𝒂𝒓𝒆 𝒎𝒆𝒂𝒔𝒖𝒓𝒂𝒃𝒍𝒆.    

Solution: Let f1 = f/ E1 and Let f2 = f/ E2  

Let E =  𝐸1𝑈𝐸2 

Clearly E is measurable because 𝐸1 𝑎𝑛𝑑 𝐸2 𝑎𝑟𝑒 𝑚𝑒𝑎𝑠𝑢𝑟𝑎𝑏𝑙𝑒. Suppose f is measurable on E then by 

previous exercise f1 is measurable on E1 and f2 is measurable on E2. 

Conversely, Let 𝛼 𝑏𝑒 𝑎𝑛𝑦 𝑟𝑒𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟. 

Therefore 

{x ∈E: f(x) > 𝛼 } = { x ∈  𝐸1𝑈𝐸2 : f(x) > 𝛼 } 

      = { x ∈E1: f(x) > 𝛼 }∪ { x ∈E2: f(x) > 𝛼 } 

                            = { x ∈E1: f1(x) > 𝛼 }∪ { x ∈E2: f2(x) > 𝛼 } 

because f1 is measurable on E1 and f2 is measurable on E2. 

 f is measurable on E =  𝐸1𝑈𝐸2. 

2.24  Theorem. If a function f is continuous almost everywhere in E, then f is measurable. 

Proof. Since  f  is  continuous almost everywhere in E, there exists a subset D of E with m*D = 0 

such that f is continuous at every  point  of  the  set  C = E-D.  

To prove that f is measurable, let 𝛼 denote any given real number.  

Consider the set {x ∈E | f(x) >  } = B(say) 

We have to show that B is measurable. If B ∩C = 𝜑, 𝑡ℎ𝑒𝑛 𝐵 ⊆ 𝐷. 

 m*(B) ≤ m*(D) = 0. 

   m*(B) = 0. 

 B is measurable. 

Now suppose that B ∩C ≠ 𝜑. For this purpose, let x denote an arbitrary point in B ∩C. Then x ∈

𝐵 𝑎𝑛𝑑 𝑥 ∈ 𝐶 ⟹f(x) > 𝛼 and f is continuous at x. Hence there exists an open interval Ux 

containing    x such that f(y) > 𝛼 hold  for  every  point   y of E∩ Ux. Let   U   =⋃ 𝑈𝑥𝑥∈𝐵∩𝐶 .  

Since x ∈E ∩Ux ⊂B holds for every x ∈B ∩C,  we    have    

B ∩C⊂E ∩Ux ⊂B.   This   implies     B = (E ∩U) ∪(B ∩D). As an open subset of R, U is 

measurable. Hence E ∩U is measurable. On the other hand, since m*(B∩D) ≤m*D = 0 ,B∩D is 

also measurable. This implies that B is measurable. This completes the proof of the theorem. 

2.25 Littlewood’s three principles of measurability 

The following three principles concerning measure are due to Littlewood. 

First Principle. Every measurable set is a finite union of intervals. 

Second Principle. Every measurable function is almost a continuous function. 
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Third Principle. If {fn} is a sequence of measurable function defined on a set E of finite measure and if 

fn (x) →f(x) on E, then fn (x) converges almost uniformly on E. 

First of all we consider third principle. We shall prove Egoroff’s theorem which is a slight modification 

of third principle of Littlewood’s. 

2.26 Theorem. Let E be a measurable set with finite measure and {fn} be a sequence of measurable 

functions defined on a set E such that  

fn (x) →f(x) for each x ∈ 𝑬. 

Then given 𝜺 > 0  and 𝜹 > 0, there corresponds a measurable subset A  of E  with m(A) < 𝜹  and an 

integer N such that |𝒇𝒏(𝒙) − 𝒇(𝒙)| <  𝜀 ∀ 𝑥 ∈ 𝐸 − 𝐴 𝑎𝑛𝑑 𝑛 ≥ 𝑁. 

Proof: Consider the sets 𝐺𝑛 = {𝑥 ∈ 𝐸: |𝑓𝑛(𝑥) − 𝑓(𝑥)| ≥ 𝜀} 

Now since fn and f are measurable. 

So the sets 𝐺𝑛′𝑠 are also measurable. 

Now define 𝐸𝑘 = ⋃ 𝐺𝑛.
∞
𝑛=𝑘  

   = {𝑥: 𝑥 ∈ 𝐺𝑛 𝑓𝑜𝑟 𝑠𝑜𝑚𝑒 𝑛 ≥ 𝑘} 

                         = {𝑥: 𝑥 ∈ 𝐸, |𝑓𝑛(𝑥) − 𝑓(𝑥)| ≥ 𝜀 𝑓𝑜𝑟 𝑠𝑜𝑚𝑒 𝑛 ≥ 𝑘} 

We observe that 𝐸𝑘+1 ⊆ 𝐸𝑘. 

On the contrary, we assume that for each 𝑥 ∈ 𝐸𝑘∀ 𝑘. 

Then for any fixed given k, we must have 

𝐸𝑘 = {|𝑓𝑛(𝑥) − 𝑓(𝑥)| ≥ 𝜀 𝑓𝑜𝑟 𝑠𝑜𝑚𝑒 𝑛 ≥ 𝑘} 

But this leads to 𝑓𝑛(𝑥) ↛f(x). a contradiction. 

Hence for each x∈ 𝐸 there is some 𝐸𝑘 such that 𝑥 ∉ 𝐸𝑘 ⟹⋂ 𝐸𝑘 = ∅∞
𝑘=1  

Now measure of E is finite, so by proposition of decreasing sequence, we have 

lim
𝑛→∞

𝑚(𝐸𝑛) = 𝑚(⋂𝐸𝑛

∞

𝑛=1

) = 𝑚(∅) = 0 

lim
𝑛→∞

𝑚(𝐸𝑛) = 0. 

Hence given 𝛿 > 0, ∃ an integer N such that m(𝐸𝑘)  <  𝛿∀ 𝑘 ≥ 𝑁. 

In particular put k = N 

𝑚(𝐸𝑛) <  𝛿 

𝑚{𝑥: 𝑥 ∈ 𝐸, |𝑓𝑛(𝑥) − 𝑓(𝑥)| ≥ 𝜀𝑓𝑜𝑟 𝑠𝑜𝑚𝑒 𝑛 ≥ 𝑁} < 𝛿  

If we write A = 𝐸𝑛, then m(A) < 𝛿 𝑎𝑛𝑑  

E-A = {𝑥: 𝑥 ∈ 𝐸, |𝑓𝑛(𝑥) − 𝑓(𝑥)| < 𝜀𝑓𝑜𝑟 𝑎𝑙𝑙 𝑛 ≥ 𝑁} 
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In other words, 

|𝑓𝑛(𝑥) − 𝑓(𝑥)| < 𝜀𝑓𝑜𝑟 𝑎𝑙𝑙 𝑛 ≥ 𝑁 𝑎𝑛𝑑 𝑥 ∈ 𝐸 − 𝐴 

This completes the proof. 

2.27 Definition: A Sequence {fn} of functions defined on a set E is said to converge almost everywhere 

to f if lim ( ) ( )n
n

f x f x


  ∀ 𝑥 ∈ 𝐸 − 𝐸1 𝑤ℎ𝑒𝑟𝑒 𝐸1 ⊂ 𝐸, 

 𝑚(𝐸1) = 0. 

2.28 Theorem. Let E be a measurable set with finite measure and {fn} be a sequence of measurable 

functions converging almost everywhere to a real valued function f defined on a set E. Then given 

𝜺 > 0  and 𝜹 > 0, there corresponds a measurable subset A  of E  with m(A) < 𝜹  and an integer N 

such that |𝒇𝒏(𝒙) − 𝒇(𝒙)| <  𝜀 ∀ 𝑥 ∈ 𝐸 − 𝐴 𝑎𝑛𝑑 𝑛 ≥ 𝑁. 

Proof: Let F be a set of points of E for which 𝑓𝑛(𝑥) ↛f. Then m(F) = 0. 

Since fn (x) →f(x) almost everywhere, then  

fn (x) →f(x) ∀ 𝑥 ∈ 𝐸 − 𝐹 = 𝐸1(𝑠𝑎𝑦) 

Now applying the last theorem for the set 𝐸1, we get a set A1 ⊆ E1  with m(A1) < 𝛿  and an integer N 

such that |𝑓𝑛(𝑥) − 𝑓(𝑥)| <  𝜀 ∀ 𝑥 ∈ 𝐸1 − 𝐴1 𝑎𝑛𝑑 𝑛 ≥ 𝑁. 

Now the required result follows if we take 

𝐴 = 𝐴1 ∪ 𝐹 𝑎𝑠 𝑠ℎ𝑜𝑤𝑛 𝑏𝑒𝑙𝑜𝑤. 

𝑚(𝐴) = 𝑚(𝐴1 ∪ 𝐹) = 𝑚(𝐴1) + 𝑚(𝐹) = 𝑚(𝐴1) + 0 = 𝑚(𝐴1) < 𝛿 

Also 𝐸 − 𝐴 = 𝐸 − (𝐴1 ∪ 𝐹) = 𝐸 ∩ (𝐴1 ∪ 𝐹)
𝑐 

         = 𝐸 ∩ 𝐴1
𝑐 ∩ 𝐹𝑐 = (𝐸 ∩ 𝐹𝑐) ∩ 𝐴1

𝑐
 

         = (𝐸 − 𝐹) ∩ 𝐴1
𝑐 = 𝐸1 ∩ 𝐴1

𝑐 = 𝐸1 − 𝐴1 

i.e., E-A = 𝐸1 − 𝐴1 

Hence we have found a set A ⊆ E with m(A) < 𝛿  and an integer N such that |𝑓𝑛(𝑥) − 𝑓(𝑥)| <  𝜀 ∀ 𝑥 ∈
𝐸 − 𝐴 𝑎𝑛𝑑 𝑛 ≥ 𝑁. 

2.29 Definition: A Sequence {fn} of functions is said to converge almost uniformly everywhere to a 

measurable function f defined on a measurable set E if for each 𝜀 >0, ∃ 𝑎 𝑚𝑒𝑎𝑠𝑢𝑟𝑎𝑏𝑙𝑒 𝑠𝑒𝑡 A ⊆ E with 

m(A) <  𝜀  such that and an integer N such that 𝑓𝑛 𝑐𝑜𝑛𝑣𝑒𝑟𝑔𝑒𝑠 𝑡𝑜 𝑓 𝑢𝑛𝑖𝑓𝑜𝑟𝑚𝑙𝑦 𝑜𝑛 𝐸 − 𝐴. 

2.30 Theorem.(Egoroff’s Theorem). Let {fn} be a sequence of measurable functions defined on a set E 

of finite measure such that fn (x) →f(x) almost everywhere. Then to each 𝜂> 0 there corresponds a 

measurable subset A  of E such that  m (A) < 𝜂 such that fn(x) converges to f(x) uniformly on E-A. 

Proof.  Applying last theorem with 𝜀 = 1, 𝛿 =
𝜂
2⁄  

We get a measurable subset A1⊆ E with  m (A1) < 
𝜂
2⁄   and positive integer N1 such that 

|𝑓𝑛(𝑥) − 𝑓(𝑥)| < 1 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑛 ≥ 𝑁1 𝑎𝑛𝑑 𝑥 ∈ 𝐸1(= 𝐸 − 𝐴1) 

Again taking 𝜀 =
1

2
, 𝛿 =

𝜂
22⁄  
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We get another measurable subset A2⊆ E1 with  m (A2) < 
𝜂
22⁄   and positive integer N2 such that 

|𝑓𝑛(𝑥) − 𝑓(𝑥)| <
1

2
 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑛 ≥ 𝑁2 𝑎𝑛𝑑 𝑥 ∈ 𝐸2(= 𝐸1 − 𝐴2) 

Continuing like that at kth stage, we get a measurable subset Ak⊆ Ek-1 with   

m (Ak) < 
𝜂
2𝑘⁄   and positive integer Nk such that 

|𝑓𝑛(𝑥) − 𝑓(𝑥)| <
1

𝑘
 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑛 ≥ 𝑁𝑘 𝑎𝑛𝑑 𝑥 ∈ 𝐸𝑘(= 𝐸𝑘−1 − 𝐴𝑘) 

Now we set A = ⋃ 𝐴𝑘
∞
𝑘=1  

Then we have 

m(A) ≤ ∑ 𝑚(𝐴𝑘) < ∑ 𝜂
2𝑘⁄ = 𝜂.∑

1

2𝑘
= 𝜂.∞

𝑘=1
∞
𝑘=1

∞
𝑘=1   

Also E-A = E- ⋃ 𝐴𝑘 = ⋂ [𝐸𝑘−1 − 𝐴𝑘] = ⋂ 𝐸𝑘[∵ 𝐸𝑘−1 − 𝐴𝑘 = 𝐸𝑘]𝑘𝑘𝑘  

Let 𝑥 ∈ 𝐸 − 𝐴, 𝑡ℎ𝑒𝑛 𝑥 ∈ 𝐸𝑘∀ 𝑘 𝑎𝑛𝑑 𝑠𝑜 |𝑓𝑛(𝑥) − 𝑓(𝑥)| <
1

𝑘
∀𝑛 ≥ 𝑁𝑘. 

Choose k such that 
1

𝑘
< 𝜀 𝑠𝑜 𝑡ℎ𝑎𝑡 𝑤𝑒 𝑔𝑒𝑡 

|𝑓𝑛(𝑥) − 𝑓(𝑥)| < 𝜀 ∀ 𝑥 ∈ 𝐸 − 𝐴 𝑎𝑛𝑑 𝑛 ≥ 𝑁𝑘 = 𝑁.  

This completes the proof of the theorem. 

Now we pass to the second principle of Littlewood. This is nothing but approximation of measurable 

functions by continuous functions. In this connection we shall prove the following theorem known as 

Lusin Theorem after the name of a Russian Mathematician Lusin, N.N. 

2.31 Lusin Theorem: Let f be a measurable real valued function defined on closed interval [a,b], 

then given 𝜹 > 0, ∃ 𝑎 𝑐𝑜𝑛𝑡𝑖𝑛𝑢𝑜𝑢𝑠 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 𝑔 𝑜𝑛 [𝒂, 𝒃]𝒔𝒖𝒄𝒉 𝒕𝒉𝒂𝒕 

𝒎{𝒙: 𝒇(𝒙) ≠ 𝒈(𝒙)} < 𝛿. 

Proof: First we prove two lemmas. 

Lemma 1. Let F be a closed subset of R, then a function g: F→ 𝑹 is continuous if sets {𝒙:𝒈(𝒙) ≤

𝒂} 𝒂𝒏𝒅 {𝒙:𝒈(𝒙) ≥ 𝒃} are closed subsets of F for every rational a and b. 

Proof: Let {𝑥: 𝑔(𝑥) ≤ 𝑎} 𝑎𝑛𝑑 {𝑥: 𝑔(𝑥) ≥ 𝑏} 𝑎𝑟𝑒 𝑐𝑙𝑜𝑠𝑒𝑑 𝑠𝑢𝑏𝑠𝑒𝑡 𝑜𝑓 𝐹. 

⇒ {𝑥: 𝑔(𝑥) > 𝑎} ∩ {𝑥: 𝑔(𝑥) < 𝑏} is open subset of F. 

.i.e., {𝑥: 𝑎 < 𝑔(𝑥) < 𝑏} is open. 

i.e., {𝑥: 𝑔(𝑥) ∈ (𝑎, 𝑏)} 𝑖𝑠 𝑜𝑝𝑒𝑛 𝑖𝑛 𝐹. 

i.e., 𝑔−1(𝑎, 𝑏)𝑖𝑠 𝑜𝑝𝑒𝑛 𝑖𝑛 𝐹. 

Let O be any open set in R then O can be written as countable union of disjoint open intervals with 

rational end points. 
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Let O = ⋃ (𝑎𝑛, 𝑏𝑛)
∞
𝑛=1  

Then 𝑔−1O = 𝑔−1(⋃ (𝑎𝑛, 𝑏𝑛))
∞
𝑛=1  = ⋃ 𝑔−1(𝑎𝑛, 𝑏𝑛)

∞
𝑛=1  

Since 𝑔−1(𝑎, 𝑏)𝑖𝑠 𝑜𝑝𝑒𝑛 and countable union of open set is open. 

⇒ 𝑔−1(𝑂) 𝑖𝑠 𝑜𝑝𝑒𝑛 ⇒ 𝑔 𝑖𝑠 𝑐𝑜𝑛𝑡𝑖𝑛𝑢𝑜𝑢𝑠. 

Lemma 2. Let f: [a, b] → 𝑹 be a measurable function, then given 

 𝜹 > 0, ∃ 𝑎 𝑐𝑙𝑜𝑠𝑒𝑑 𝑠𝑢𝑏𝑠𝑒𝑡 𝐹 𝑜𝑓 𝐸 = [𝒂, 𝒃]𝒔𝒖𝒄𝒉 𝒕𝒉𝒂𝒕 𝒎(𝑬 − 𝑭) <  𝛿 𝑎𝑛𝑑
𝒇

𝑭
𝒊𝒔 𝒄𝒐𝒏𝒕𝒊𝒏𝒖𝒐𝒖𝒔. 

Proof: Let {𝑟𝑛} 𝑏𝑒 𝑎 𝑠𝑒𝑞𝑢𝑒𝑛𝑐𝑒 𝑜𝑓 𝑎𝑙𝑙 𝑟𝑎𝑡𝑖𝑜𝑛𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟𝑠. 

For n∈ 𝑁, take 𝐴𝑛 = {𝑥: 𝑓(𝑥) ≥ 𝑟𝑛} 

And 𝐴𝑛
∗ = {𝑥: 𝑓(𝑥) ≤ 𝑟𝑛} 

Clearly each 𝐴𝑛 𝑎𝑛𝑑𝐴𝑛
∗ 𝑎𝑟𝑒 𝑚𝑒𝑎𝑠𝑢𝑟𝑎𝑏𝑙𝑒 [∵ 𝑓 𝑖𝑠 𝑚𝑒𝑎𝑠𝑢𝑟𝑎𝑏𝑙𝑒] 

Then ∃ closed sets 𝐵𝑛 ⊂ 𝐴𝑛 𝑎𝑛𝑑 𝐵𝑛
∗ ⊂ 𝐴𝑛

∗ 𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡 

𝑚(𝐴𝑛 − 𝐵𝑛) <
𝛿

2𝑛. 3
 𝑎𝑛𝑑 𝑚(𝐴𝑛

∗ − 𝐵𝑛
∗) <

𝛿

2𝑛. 3
 

Let 𝐷 = [⋃ (𝐴𝑛 − 𝐵𝑛)
∞
𝑛=1 ] ∪ [⋃ (𝐴𝑛

∗ − 𝐵𝑛
∗)∞

𝑛=1 ] 

Clearly D is measurable. 

Therefore m(D) ≤ ∑ 𝑚(𝐴𝑛 − 𝐵𝑛) + ∑ 𝑚(𝐴𝑛
∗ − 𝐵𝑛

∗)∞
𝑛=1

∞
𝑛=1  

m(D) < ∑
𝛿

2𝑛.3
+ ∑

𝛿

2𝑛.3
∞
𝑛=1

∞
𝑛=1  

  =
𝛿

3
+
𝛿

3
=

2𝛿

3
 

⇒ 𝑚(𝐷) <
2𝛿

3
. 

Now E and D are measurable. 

 E-D is measurable. 

Then for given 𝛿 > 0, ∃ 𝑎 𝑐𝑙𝑜𝑠𝑒𝑑 𝑠𝑒𝑡 𝐹 ⊆ 𝐸 − 𝐷 𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡 𝑚(𝐸 − 𝐷 − 𝐹) <
𝛿

3
 

Now E-F = D∪ (𝐸 − 𝐹 − 𝐷) 

 m(E-F) = m(D) + m(𝐸 − 𝐹 − 𝐷) <
2𝛿

3
+
𝛿

3
=  𝛿 

Let h = f/F 

To show that h is continuous on F. 

For rational number 𝑟𝑛, 

{𝑥: ℎ(𝑥) ≤ 𝑟𝑛} = {𝑥: 𝑓(𝑥) ≤ 𝑟𝑛} ∩ 𝐹 

      = 𝐴𝑛
∗ ∩ 𝐹 = [((𝐴𝑛

∗ − 𝐵𝑛
∗) ∪ 𝐵𝑛

∗)] ∩ 𝐹 

     =[((𝐴𝑛
∗ − 𝐵𝑛

∗) ∩ 𝐹)] ∪ [𝐵𝑛
∗ ∩ 𝐹] 

     = ∅ ∪ [𝐵𝑛
∗ ∩ 𝐹] 

     = 𝐵𝑛
∗ ∩ 𝐹 
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𝐷 = [⋃(𝐴𝑛 − 𝐵𝑛)

∞

𝑛=1

] ∪ [⋃(𝐴𝑛
∗ − 𝐵𝑛

∗)

∞

𝑛=1

] 

⇒ (𝐴𝑛
∗ − 𝐵𝑛

∗) ⊂ 𝐷 

∵  𝐹 ⊆ 𝐸 − 𝐷 ⇒ 𝐹 ∩ 𝐷 = ∅. 

{𝑥: ℎ(𝑥) ≤ 𝑟𝑛} = 𝐵𝑛
∗ ∩ 𝐹 

Since 𝐵𝑛
∗ 𝑖𝑠 𝑐𝑙𝑜𝑠𝑒𝑑 𝑖𝑛 𝐸 = [𝑎, 𝑏]. 

𝐵𝑛
∗ ∩ 𝐹 𝑖𝑠 𝑐𝑙𝑜𝑠𝑒𝑑 𝑖𝑛 𝐹. 

 {𝑥: ℎ(𝑥) ≤ 𝑟𝑛} 𝑖𝑠 𝑐𝑙𝑜𝑠𝑒𝑑 𝑖𝑛 𝐹. 

By lemma 1, h is continuous. 

So f/F is continuous. 

Lusin Theorem:(Proof):- We have 

f:[a, b]→ 𝑅 is measurable function, then by lemma(2), for given 𝛿 > 0, ∃ 𝑎 𝑐𝑙𝑜𝑠𝑒𝑑 𝑠𝑒𝑡 𝐹 ⊂ 𝐸 

  𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡 𝑚(𝐸 − 𝐹) < 𝛿 𝑎𝑛𝑑 ℎ =
𝑓

𝐹
𝑖𝑠 𝑐𝑜𝑛𝑡𝑖𝑛𝑢𝑜𝑢𝑠. 

Now using result “Every real valued continuous  function defined on a closed subset of a  real 

number can be extended continuously  to all real numbers.” 

So h can be extended to continuous function h*: R→ 𝑅. 

Let g :[a, b]→ 𝑅, 𝑔 𝑖𝑠 𝑐𝑜𝑛𝑡𝑖𝑛𝑢𝑜𝑢𝑠  

𝑎𝑛𝑑 𝑓𝑜𝑟 𝑥 ∈ 𝐹, 𝑔(𝑥) = 𝑓(𝑥)𝑜𝑛 𝐹. 

𝑎𝑛𝑑 {𝑥 ∈ 𝐸: 𝑓(𝑥) ≠ 𝑔(𝑥)} ⊆ 𝐸 − 𝐹 

𝑚{𝑥 ∈ 𝐸: 𝑓(𝑥) ≠ 𝑔(𝑥)} ≤ 𝑚(𝐸 − 𝐹) < 𝛿. 

“Convergence in Measure” 

The notion of convergence in measure is introduced by F.Reisz and E.Fisher in 1906-07. 

Sometimes it is also called approximate convergence. 

2.32 Definition.  A sequence < fn > of measurable functions is said to convergence in measure to f on a 

set E, written as 𝑓𝑛
𝑚
→𝑓 𝑜𝑛 𝐸,  

If given   𝛿> 0,  ∃ 𝑚 ∈   N such that for all n  ≥ 𝑚, we have 

 𝑚{𝑥||𝑓(𝑥) − 𝑓𝑛(𝑥)| ≥  𝜀} <  𝛿. 

Or lim
𝑛→∞

 𝑚{𝑥||𝑓(𝑥) − 𝑓𝑛(𝑥)| ≥  𝜀} = 0 

This means that for all sufficiently large value of n, functions 𝑓𝑛 of the sequence < fn > differ from the 

limit function f by a small quantity with the exception of the set of point whose measure is arbitrary 

small (<𝛿). 

2.33 Theorem: If sequence {𝒇𝒏} converges in measure to the function f, then it converges in 

measure to  every function g which is equivalent to the function. 

Proof:       For each 𝜀 > 0, we have 

{𝑥: |𝑓𝑛(𝑥) − 𝑔(𝑥)| ≥ 𝜀} ⊂ {𝑥: 𝑓(𝑥) ≠ 𝑔(𝑥)} ∪ {𝑥: |𝑓𝑛(𝑥) − 𝑓(𝑥)| ≥ 𝜀}  
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Since g is equivalent to f, then we have 

              𝑚{𝑥: 𝑓(𝑥) ≠ 𝑔(𝑥)} = 0.          

 𝑚{𝑥: |𝑓𝑛(𝑥) − 𝑔(𝑥)| ≥ 𝜀} ≤ 𝑚{𝑥: 𝑓(𝑥) ≠ 𝑔(𝑥)} + 𝑚{𝑥: |𝑓𝑛(𝑥) − 𝑓(𝑥)| ≥ 𝜀}                 

 ≤ 𝑚{𝑥: |𝑓𝑛(𝑥) − 𝑓(𝑥) ≥ 𝜀|} < 𝛿 

⇒ 𝒇𝒏
𝒎
→𝒈. 

Hence the result. 

2.34 Theorem: If sequence {𝒇𝒏} converges in measure to the function f, then the limit function f is 

unique a.e. 

Proof: Let g be another function such that 𝒇𝒏
𝒎
→𝒈. 

Since |𝑓 − 𝑔| ≤ |𝑓 − 𝑓𝑛| + |𝑓𝑛 − 𝑔| 

Now we observe that for each 𝜀 > 0, 

{𝑥: |𝑓(𝑥) − 𝑔(𝑥)| ≥ 𝜀} ⊂ {𝑥: |𝑓𝑛(𝑥) − 𝑓(𝑥)| ≥
𝜀

2
} ∪ {𝑥: |𝑓𝑛(𝑥) − 𝑔(𝑥)| ≥

𝜀

2
} 

Since by proper choice of 𝜀, the measure of both the sets on the right can be made arbitrary small, we 

have 

𝑚{𝑥: |𝑓(𝑥) − 𝑔(𝑥)| ≥ 𝜀}=0 

 f = g almost everywhere. Hence the proof. 

2.35 Theorem: Let  {𝒇𝒏} be a sequence of measurable functions which converges to f a.e. on 

X. Then 𝒇𝒏
𝒎
→𝒇 𝒐𝒏 𝑿. 

Proof:  For each n∈ 𝑁 𝑎𝑛𝑑 𝜀 > 0, 𝐶𝑜𝑛𝑠𝑖𝑑𝑒𝑟 𝑡ℎ𝑒 𝑠𝑒𝑡𝑠 
𝑆𝑛(𝜀) = {𝑥 ∈ 𝑋: |𝑓𝑛(𝑥) − 𝑓(𝑥)| ≥ 𝜀} 

Let 𝛿 > 0 𝑏𝑒 𝑎𝑛𝑦 𝑎𝑟𝑏𝑖𝑡𝑟𝑎𝑟𝑦 𝑛𝑢𝑚𝑏𝑒𝑟, 𝑡ℎ𝑒𝑛 ∃𝑎 𝑚𝑒𝑎𝑠𝑢𝑟𝑎𝑏𝑙𝑒 𝑠𝑒𝑡 𝐴 ⊂ 𝑋 

With m(A) < 𝛿 and the number N such that 

|𝑓𝑛(𝑥) − 𝑓(𝑥)| < 𝜀 ∀𝑥 ∈ 𝑋 − 𝐴 𝑎𝑛𝑑 𝑛 ≥ 𝑁 

Then it follows that 𝑆𝑛(𝜀) ⊂ 𝐴 ∀ 𝑛 ≥ 𝑁 

 𝑚(𝑆𝑛(𝜀)) < 𝑚(𝐴) <  𝛿∀ 𝑛 ≥ 𝑁 

 lim
𝑛→∞

 𝑚(𝑆𝑛(𝜀)) = 0 

Hence𝒇𝒏
𝒎
→𝒇 𝒐𝒏 𝑿. 

2.36 Remark: The converse of the above theorem need not be true i.e, convergence in measure is 

more general than a.e. infact there are sequence of measurable functions that converges in 

measure but fails to converge at any point. 

To affect we consider the following example 

𝒇𝒏: [𝟎, 𝟏] → 𝑹 𝒂𝒔 

𝒇𝒏(𝒙) =  {
𝟏, 𝒊𝒇 𝒙 ∈ [

𝒌

𝟐𝒕
,
𝒌 + 𝟏

𝟐𝒕
]

𝟎, 𝒐𝒕𝒉𝒆𝒓𝒘𝒊𝒔𝒆
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Let n = 𝑘 + 2𝑡  𝑤ℎ𝑒𝑟𝑒 0 ≤ 𝑘 ≤ 2𝑡 . 

Let 𝜀 > 0 𝑏𝑒 𝑔𝑖𝑣𝑒𝑛. Choose an m ∈ 𝑁 𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡 
2

𝑚
< 𝜀 

Then 𝑚{𝑥: |𝑓𝑛(𝑥) − 0| ≥ 𝜀} = 𝑚{𝑥: |𝑓𝑛| ≥ 𝜀} 

              =
1

2𝑡
<

1

2𝑛
  [
∵ 𝑛 = 𝑘 + 2𝑡 < 2𝑡 + 2𝑡

< 2. 2𝑡  ,   
1

2𝑡
<

2

𝑛

]   (*) 

                                              ≤
2

𝑚
< 𝜀  ∀ 𝑛 ≥ 𝑚 

 𝑓𝑛 converges in measure to zero for x∈ [0, 1] 

 𝑖. 𝑒. , 𝑓𝑛
𝑚
→ [0, 1] 

fn (x) has value 1 for arbitrary large value of n and so it does not converge to zero a.e. because 

on taking n very large, we get 2t large and hence number of subintervals of type (*) increase and 

possibility of 𝑓𝑛(𝑥) = 1 𝑖𝑠 𝑚𝑜𝑟𝑒. 

2.37 Theorem (F. Riesz). “Let < fn > be a sequence of measurable functions which converges in 

measure to f. Then there is a subsequence < 𝑓𝑛𝑘 > of  < fn > which  converges  to  f almost 

everywhere.”    

Proof.  Let 𝒇𝒏
𝒎
→𝒇 .  

Let us consider two sequences {
1

𝑛
}  𝑎𝑛𝑑 {

1

2𝑛
}  𝑜𝑓 𝑟𝑒𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟𝑠 𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡 

 
1

𝑛
→ 0  𝑎𝑠 𝑛 → ∞ 𝑎𝑠 ∑

1

2𝑛
= 1 < ∞.

∞

𝑛=1

 

We now choose a strictly increasing sequence {𝑛𝑘} of positive integer as follows 

Let 𝑛1 be a positive integer such that 

𝑚({𝑥: |𝑓𝑛1(𝑥) − 𝑓(𝑥)| ≥ 1}) <
1

2
 

Such a number 𝑛1  exists since in view 𝒇𝒏
𝒎
→𝒇  for a given 𝜀1 = 1 > 0 𝑎𝑛𝑑 

 𝛿1 =
1

2
> 0, ∃ 𝑎𝑛 𝑖𝑛𝑡𝑒𝑔𝑒𝑟 𝑛1𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡  

𝑚({𝑥: |𝑓𝑛(𝑥) − 𝑓(𝑥)| ≥ 1}) <
1

2
∀𝑛 ≥ 𝑛1 

In particular for n = 𝑛1. 

Similarly, Let 𝑛2 be a positive number such that 𝑛2 ≥ 𝑛1 𝑎𝑛𝑑 

𝑚({𝑥: |𝑓𝑛2(𝑥) − 𝑓(𝑥)| ≥
1

2
}) <

1

22
 𝑎𝑛𝑑 𝑠𝑜 𝑜𝑛. 

Continuing in this process, we get the positive number𝑛𝑘 ≥ 𝑛𝑘−1 

𝑚({𝑥: |𝑓𝑛𝑘(𝑥) − 𝑓(𝑥)| ≥
1

𝑘
}) <

1

2𝑘
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Now set Ek = ⋃ {𝑥: |𝑓𝑛𝑖(𝑥) − 𝑓(𝑥)| ≥
1

𝑖
} , 𝑘 ∈ 𝑁∞

𝑖=𝑘 . 

And 𝐸 =  ⋂ 𝐸𝑘
∞
𝑘=1  

Then it is clear that {𝐸𝑘} is decreasing sequence of measurable sets. 

Therefore 𝑚(𝐸) = lim
𝑘→∞

𝑚(𝐸𝑘) 

But 𝑚(𝐸𝑘) = 𝑚 {⋃ {𝑥: |𝑓𝑛𝑖(𝑥) − 𝑓(𝑥)| ≥
1

𝑖
}∞

𝑖=𝑘 } 

         ≤ ∑ 𝑚 {𝑥: |𝑓𝑛𝑖(𝑥) − 𝑓(𝑥)| ≥
1

𝑖
}∞

𝑖=𝑘  

                     < ∑
1

2𝑖
∞
𝑖=𝑘 → 0 𝑎𝑠 𝑘 → ∞     

                    = 
1

2𝑘−1
 

Hence m(E) = 0. 

Thus it remains to be verified that the sequence < 𝑓𝑛𝑘 > converges to f on X-E. 

So let 𝑥0 ∉ 𝐸. Then 𝑥0 ∉ 𝐸𝑚 for some positive integer m. 

i.e., 𝑥0 ∉ {𝑥: |𝑓𝑛𝑘(𝑥) − 𝑓(𝑥)| ≥
1

𝑘
} , 𝑘 ≥ 𝑚 

⇒ |𝑓𝑛𝑘(𝑥) − 𝑓(𝑥)| <
1

𝑘
, 𝑘 ≥ 𝑚 

But 
1

𝑘
→ 0 as k→ ∞ 

Hence lim
𝑘→∞

𝑓𝑛𝑘(𝑥0) = 𝑓(𝑥0). 

Since 𝑥0 ∈ 𝑋 − 𝐸 was arbitrary, it follows that 

lim
𝑘→∞

𝑓𝑛𝑘(𝑥) = 𝑓(𝑥) for each x ∈ 𝑋 − 𝐸 and so {𝑓𝑛𝑘} 𝑐𝑜𝑛𝑣𝑒𝑟𝑔𝑒𝑠 𝑡𝑜 𝑓 𝑎. 𝑒. 

This completes the proof. 




