SECTION - I I

MEASURABLE FUNCTIONS

Measurable Function: An extended real valued function f defined on a measurable set E is said to be
measurable function if {x| f(x) > a} is measurable for each real number a.

2.1 Theorem. A constant function with a measurable domain is measurable.

Proof: Let f be a constant function with a measurable domain E and Let f : E— R be a constant function
i.e., f{(X) =k V x € E and k is constant.

To show that {x| f(xX) > a} is measurable for each real number a.

E, k>«
{X|f(x)> a}=3¢, k=«a
o, k<a

Since both ¢ and E are measurable, it follows that the set {x| f(x) > a} and hence f is measurable.

2.2 Theorem. Let f be an extended real valued function defined on a measurable set E, Then f is
said to be measurable (Lebesgue function) if for any real a« any one of the following four
conditions is satisfied.

(@) {x| f(x) > a} is measurable
(b) {x| f(x) = a} is measurable
(c) {X| f(x) < a} is measurable
(d) {x| f(x) < a} is measurable.

Proof: We show that these four conditions are equivalent. First of all we show that (a) and (b) are
equivalent. Since

) > a} = {Xf(x) < a}®

And also we know that complement of a measurable set is measurable, therefore (a) =(d) and
conversely.

Similarly since (b) and (c) are complement of each other, (c) is measurable if (b) is measurable and
conversely.

Therefore, it is sufficient to prove that (a) =(b) and conversely.
Firstly we show that (b) = (a).
The set {x| f(x) = a} is given to be measurable.

Now
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K100 > ay={J K002 a+3)

But by (b), {x| f(x) > a + %} Is measurable. Also we know that countable union of measurable sets is
measurable. Hence {x| f(x) > a} is measurable which implies that (b) =(a).

Conversely, let (a) holds. We have

KM= ay= () W02 a—2

n=1
The set {x| f(x) > « —%} IS measurable by (a). Moreover, intersection of measurable sets is also
measurable . Hence {x| f(xX) > a} is also measurable . Thus (a) = (b).
Hence the four conditions are equivalent.

2.3 Remark: We can say that f is measurable function if for any real number a, any of the four
conditions in the above theorem holds.

2.4 Lemma. If a is an extended real number then these four conditions imply that {x| f(x) = a}is
also measurable.

Proof. Let « be a real number, then
{Xf(X) = a}= {X|f(x) = a}n{X fX) <a}.

Since {x| f(x) = a} and {x| f(x) < a} are measurable by conditions (b) and (d), the set {x| f(x) = a}is
measurable being the intersection of measurable sets.

Suppose @ = oo. Then {x| f(x) = o} =[] {x|f(x)> n}
n=1
Which is measurable by the condition (a) and the fact intersection of measurable sets is measurable.
Similarly when = —oo, then
{X| f(x) = —oo} =ﬁ {x| f(x) < —n}, which is again measurable by conditions (c).Hence the

n=1

results follows.

2.5 Theorem: If f is measurable function on each of the sets in a countable collection {Ei} of
disjoint measurable sets, then f is measurable on E = U; E;.

Proof: Let E = U; E; . Then E is measurable being countable union of measurable sets is measurable.
Let a be any real number.

Consider the set {x€ E| f(x) > a} = U;{x € E;: f(x) > a} is measurable.

Because f is measurable on each Ei.

= U{x € E;: f(x) > a} is measurable.
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= {x€ E|f(xX) > a} is measurable.
Hence f is measurable on E.

2.6 Theorem: If f is measurable function on E and E; € E is measurable set then f is a measurable
function on Ei.

Proof: Let a be any real number.
Consider the set {xe E;| f(x) > a} = {xe E|f(x) > a}n E; is measurable.

2.7 Theorem. If f and g are measurable functions on a common domain E, then the set
A= {xe E: f(x)< g(x)} is measurable.

Proof. For each rational number r, define

A, ={XxeE: f(x) <r<g(x)}
Or we can write

A, ={xe E: f(x)< r}n {xe E: g(X)>r}
Since f and g are measurable on E, so the two sets on R.H.S. are measurable sets is measurable.
Now, we observe that
{xeE: f(x) <g(x)} = Ureo Ar

Since the rationals are countable, so A is countable union of measurable sets and so is measurable.
This proves the theorem.
2.8 Theorem. A continuous function defined on a measurable set is measurable.

Proof. Let f be a continuous function defined on measurable set E. Let a be any real number. We now
claim that {x € E : f(x) > «a } is closed.

Let A={x€E:f(X)=> a} 1)
To prove that A is closed, it is sufficient to show that A" < A. (2)
A’ being derived set of A.
Let x, € A’ be arbitrary element. Then x, € A" implies x, is limit point of A.
It implies that there exist a sequence {x,, } whose elements x,, € A such that

lim x, = x,
n—->oo

Moreover, f is continuous at x,; it follows that by definition of continuity x,, = x, implies f(x,)—
f(x0) 3)
By (2), we see that x,, € A foralln e N.

= f(x,) = a forall ne N.

= lim fx, > «
n—-oo
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= f(xo) = a by virtue of (3)
= x, € A by (1)

Further any x, € A" implies x, € A

=>A'CA

= Alis closed

=A IS measurable

=>{x € E: f(X) = a } is measurable.

Hence a continuous function f is measurable on E.

Converse of above theorem is not true, that is, A measurable function need not be continuous.
2.9 Example. Consider a function f: R = [0,1]

. (1ifo<sx <1
defined by f(x) = { 0 if otherwise *

Clearly function is not continuous since 0 is the point of discontinuity.
For any real number «,

o, a=1
{xeN:f(x)>a}:{ R, a<0
[01), a<0<1

Since R, ¢, [0,1) are measurable implies f is measurable function on E.

2.10 Theorem. Let f be a function defined on a measurable set E then f is measurable iff for any
open set G in R the inverse image f! (G) is measurable set.

Proof. Let f be a measurable function and let G be any setin R.  Since every open sets can be written
as countable union of disjoint open intervals.

Suppose, G = Uy I = Un(an, bn)
Then £1(G) = F(Un 1) = Un (£ ()}

= Un{x:f(x) € I}

= Uy {x: f(X) € (an by)}
but {x:f(X) € (an, b))} ={x:a, < f(x) < b,}

=X f(x) > ap3n {x: f(x) < by}
Since f is measurable function. So both sets on R.H.S. are measurable and hence
{x : f(x) € (a,, by)} is measurable.

Again f1 (G) is measurable. [ since countable union of measurable sets is measurable ]



32 Measure and Integration Theory

Conversely:- Let f1 (G) be measurable for every open set G in R. We have to prove that f is
measurable function.

Take G = (a, o) where «a is any real no.
Then f(a, ) is measurable
that is, {x : f(X) € (a, )} is measurable
that is , {x : f(x) > a} is measurable.
Thus f is measurable function.
2.11 Theorem. Let f be continuous and g be measurable function then fog is measurable.
Proof. Let a be any real number then
{x: fog(x) > a} ={x: f(g(x)) > a}
= {x:f(9(x)) € (a, )}
= {x:g(x) € f(a, )}.
Now, (a, =) is open subset of R and f is continuous implies f*(a, o) is open set.
Hence, it can be written as countable union of disjoint open intervals say
e, ) = Un In = Un(an, bn).
Therefore,
{x:fog(x) >a}= {x:9(x) € Unln} =97 (Un1ln)
=Ung™" (In)
=Un {x: g(x) € I}
=Un {x: g € (an by)}
=Un {x:a, < g(x) <byp)}
=Un {x: 8(x) > an)}n Uy, {x: g(x) < byp)}.

Since g is measurable function. Both sets on R.H.S. are measurable and their intersection is measurable.
Also countable union of measurable sets is measurable. Hence the result.

2.12 Definition. A function f is said to be a step function iff

f(x) =Ci, &1 <x < §;for some subdivision of [a, b] and some constants Ci .

a, a<x<c

Example: A function f : [0, 1] — R defined as f(x) = {ﬁ c<x<bh

where a, 8 are constant, f is a step
function.

Remark: Every step function is a measurable function.
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2.13 Theorem. For any real no ¢ and two measurable real- valued functions, f and g, the functions
f +c, cf, f+g, f-g, fgand f/g (g+ 0), |f| are all measurable.

Proof. We are given that f is measurable function and c ais any real number. Then for any real number a
{X| f(X) +c > a} = {X|f(x) > a —c}
But {x| f(x) > a — c} is measurable by the condition (a) of the definition. Hence

{x| f(x) +c > a} and so | f(x) +c is measurable.we next consider the function cf . in case c= 0, cf is
the constant function 0 and hence is measurable since every constant function is continuous and so
measurable. In case ¢ > 0 we have

{x| ¢f(x) > a} = {x|f(x) > =}, and so measurable.
In case ¢ < 0, we have {x| cf(x) > r} ={x| f(x)< E} and so measurable.

Now if f and g are two measurable real valued functions defined on the same domain, we shall show that
f+g is measurable. To show that it is sufficient to show that the set

{X| f(xX)+g(x) > a} is measurable.

if f(x) +9(X)> «a, then | f(x) > a — g(x) and by he cor. of the axiom of Archimedes there is a rational
number r such that a — g(x) <r<f(x)

since the functions f and g are measurable , the sets {x| f(x) > r} and {x| f(x) > a — r} are measurable.
Therefore, there intersection S;={x| f(x) > a — c}n {X| f(x) > a — r} also measurable.

It can be shown that {x|f(x)+g(x) > a } =U {S | r is rational}

Since the set of rational is countable and countable union of measurable sets is measurable , the set
U {S: | ris rational} and hence {x|f(x)+g(x) > a }is measurable which proves that

f(x) +9g(x) is measurable. From this part it follows that f- g = f (-g) is also measurable, since when g is
measurable (-g) is also measurable. Next we consider fg.

The measurability of fg follows that from the identity fg = % [(f+g)°—f>—g?], if we prove that f2

is measurable when f is measurable. For this it is sufficient to prove that
{X|€ E|f%(X) > a}, a is real number, is measurable.

Let a be a negative real number. Then it is clear that the set {x|f’(x) > a} = E (domain of the
measurable function f). But E is measurable by the definition of f. Hence {x|f2(x) > a} is measurable
when a < 0.

Now let & > 0, then {x|f(X) > a}= {X| f(x) > Va} u{x| f(x) < —Va}.
Since f is measurable, it follows from this equality that {x|f?(x) > a} is measurable for a > 0.

Hence 2 is also measurable when f is also measurable. Therefore, the theorem follows from the above
identity, since measurability of f and g imply the measurability of f+g.
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. f 1
nsider = =f. -
Conside g(gqt 0) p
First we have to prove thaté is measurable.

Consider the set {x : G) (x) > a} = {x : $ > a}

I( {x:g(x) >0}ifa=0
:4 {x:g(x)>0}n{x:g(x)<%}ifa>0

L{x:g(x) >0} U {{x:g(x) >0} N {x:g(x) < i}} ifa <0
Since g is measurable in each case ,i.e., {x : G) (x) > a}is measurable.

1.
= 5 is measurable.

. 1
Since f and 5 are measurable.

= 5 is measurable.

Now If f is measurable then |f| is also measurable.
It suffices to prove that measurability of the set {x| f(x) > a}= E (domain of f)
But E is assumed to be measurable. Hence {x| f(x) > a}={x| f(x) > a}u{x| f(X)< —a}

The right hand side of the equality is measurable since f is measurable. Hence {x| f(x) > a}is
measurable. Hence |[f| is measurable.

2.14 Remark: Converse of (vii) is not true.
Example: Let P be a non-measurable subset of [0, 1) = E

Define a function f: E-»> R as

- _{ 1 ifx€eP
“|-1 if xnot belongs to P
= fis not measurable because {x: f(x) > 0} = {x: f(x) = 1} = P which is non — measurable.
_ e _(pifa=1
Also, for any real a, {x: |f|(x) > a} = {x: |f(x)| > a} = {E' s

Since E and ¢ are measurable.
= {x:|f|(x) > a}is measurable.

2.15 Theorem. Let {f 7}, be a sequence of measurable functions. Then sup{fif,...,fa}, inf

{f1,f,...,fn}, sup,inf,lim f and lim f_are measurable.

Proof. Define a function M(x) = sup{f;(x), f2(x), ..., f(x)} we shall show that
{X| M(x)> a}is measurable. In fact {x| M(x)> a}= U{x: f;(x) > a}
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Since each fi is measurable, each of the set {x| fi(x)> a}is measurable and therefore their union is also
measurable. Hence {x| M(X)> a} and so M(x) is measurable. Similarly we define the function m(x) =
inf {f1,f2,,,,fn}, since {x| mM(x)< a} = UM{x: f;(x) < a}and

since {Xx| fi(x)< a}is measurable on account of the the measurability of fi, it follows that {Xx| m(x)< a}
and so m(x) is measurable . Define a function M’(x) = sup f_(x) = sup{fi,f2,,,,fn}

We shall show that the set {x| M’(x)> a} is measurable for any real a.
Now {X| M’(x)> a}= U —.{x: f,(x) > a} is measurable, since each f, is measurable.
Similarly if we define m’(x) = inf f (x), then {X| m’(xX)< a}= Un-,{x: f,(x) < a} and therefore

_inf sup

measurability of f, implies that of m’(x). Now since limf,, = 0 k> fie and

limf, = Szpklifnfk, the upper and lower limit are measurable.

2.16 Corollary: If {fn} is a sequence of measurable functions converging to f. Then f is also
measurable.

Proof: Since{fn} convergestof ,.e., lim f, = f
n—-oo
Then limf,, = limf, = lim f,
n—-oo
e, f= limf, =limf,

Hence f is measurable because limf,, and limf,, are measurable.

2.17 Corollary: The set of points on which a sequence {fn} of measurable functions converges is
measurable.

Proof: By above theorem limf,, and limf, are measurable.

= Lmf, — limf, is measurable.
Therefore, {x: [ﬁfn — limf,|(x) = a} is measurable Va.
In Particular, for a = ¢
{x: [ﬁfn — limf; |(x) = 0} is measurable.
ie.,
{x: [ﬁfn(x) = li_mfn(x)]} is measurable.
i.e., set of these points for which{f,}converges is measurable.

2.18 Definition. Let f and g be measurable functions. Then we define
f*=Max (f, 0)
f~ =Max (-, 0)

f+g +1f-gl

fvg= i.e. Max (f,g) and

f+g9-1f-gl

fAg = i.e. min (f, g)
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2.19 Theorem. Let f be a measurable function. Then % and f~ are both measurable.

Proof. Let us suppose that f > 0. Then we have

4

f=1f —f"
Now let us take f to be negative.

Then f = Max (f,0)=0,

+

f = Max (-f, 0) = -f
Therefore on subtraction f = 1t —-f-
In casef =0, then f= 0, f~=0.
Therefore f = f —f~

Thus for all f we have, f = f —-f
Also adding the components of (i) we have
f=1Ifl = f +f"

since f is positive. And from (ii) when f is negative we have

+

f+f~ =0-f~ =f" =|f|
In case f is zero, then

4

f +f~ =0+0=0=f

That is for all f, we have

fl = +f

Adding (iv) and (viii) we have f + |f| = 2 ? ,
r_1

f=_(f+If])

Similarly on subtracting we obtain f = %(f —If])

(i)

(iii)

(v)

(vi)

(vii)

(viii)

(ix)

(x)

Since measurability of f implies the measurability of | f | it is obvious from (ix) and (x) that % and f are

measurable.
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2.20 Theorem. If f and g are two measurable functions, then f vg and f Ag are measurable.

Proof. We know that

f+g+|f-gl
2

fvg =

f+9 -If-4|
2

fAg=

Now measurability of f _ measurability of |fl. Also if f and g are measurable, then f+g, f-g are
measurable. Hence fvg and f Ag are measurable.

1xeE
2.21 Definition. Characteristic function of a set E is defined by r¢ ., = {0 X & E}

This is also known as indicator function.

2.22 Examples of measurable function

1xeE
Example. Let E be a set of rationals in [0,1]. Then the characteristic function y y, :{O X g E} IS

measurable.

1xeE
Proof. For the set of rationals in the given interval, we have ¢, = {0 . E}
X &

It is sufficient to prove that { X | ygx,> «} is measurable for any real a.
Let us suppose first that @ = 1. Then { x| y¢,> a} ={X| x> 1}

Hence the set { X | x¢x,> a} is empty in this very case. But outer measure of any empty set is zero.

Hence for & > 1, the set { X | y¢,> a}and so yg y, is measurable .

Further let0< a < 1. Then { x| x¢«,> a} =E

But E is countable and therefore measurable. Hence g, is measurable.

Lastly, lete < 0. Then {X| x¢,> a} =[0,1] and therefore measurable. Hence the result.

2.23 Theorem. Characteristic function y, is measurable if and only if A is measurable.
ILxeA

Proof. Let A be measurable. Then y,(X) =
0,xeA

Hence it is clear from the definition that domain of y, is A UA® which is measurable due to the
measurability of A. Therefore, if we prove that the
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set {X | x> @} is measurable for any real a, we are through.

Let a =0. Then {X | x5, > }={X| xap = 1}=A(by the definition of Characteristic function.)
But A is given to be measurable. Hence for @ =0. The set {x | z,, > a } is measurable.

Now let us take & < 0. Then {x | z,,,> }= AUA®

Hence {X | xa, > } is measurable for a < 0 also, since A UAC has been proved to be measurable.
Hence if A is measurable, theny, is also measurable. Conversely, let us suppose that y,., Is

measurable. That is,

the set {X | xx, > a } is measurable for any real a.
Leta =0. Then {X| xp> }={X| 1apy=13=A

Therefore, measurability of{x | x,.,> } implies that of the set A for @ =0 . Now consider a < 0. Then
{X| Za> }= AUAC

Thus measurability y,,, of implies measurability of the set AUAC which imply A is measurable.

2.24 Simple Function: Let f be a real valued function defined on X. If the range of f is finite. We say
that f is a simple function.

1xeE
Let ESX and put pg ) = 0xeE

Suppose the range of f consists of the distinct number ¢y, co, ..., cn.
LetEi={x:f(x) =¢}(i=1,2,..,n)
Then f= Y1, ¢ Xz,

i.e., every simple function is a finite linear combination of characteristic function. It is clear that f is
measurable if and only if the sets E1, Ea, ..., En are measurable.

2.25 Remarks:

1. Every step function is a simple function.

2. Every simple function is measurable.
Proof: Let f be a simple function defined as above.
Then we have

f(x) = X1 ¢i x5, (%)
=C1XE, (x) + C2XE, (x)+ -+ CnXEn(x)
“f(x) = c,x €EE;
f(x) = cx €EE,
~f(x) = c,x € E
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~Ep={xf(x) = ¢}

Since each Ej is measurable. Thus yg, is measurable because y, is measurable if and only if A is
measurable.
Hence f is measurable.

3. Characteristic function of measurable set is a simple function.

4. Product of the simple function and finite linear combination of simple functions is again a
simple function.

2.26 Theorem. (Approximation Theorem). For every non-negative measurable function f, there
exists a non-negative non-decreasing sequence {fn } of simple functions such that }lilgofn(x) = f(x),

X €EE

In the general case if we do not assume non-negativeness of f , then we say For every measurable
function f, there exists a sequence {f, }, n €N of simple function which converges (pointwise) to f . i.e.
“Every measurable function can be approximated by a sequence of simple functions.”

Proof. Let us assume that f(x) =0 and x €E . Construct a sequence

i-1 i-1 i
—_— —< e P — n
fn(x) = {zn Jor = < f(x) <z fori=12,n2

} for every n eN.
n, f(x)=n

If we take n =1, then

f(x) = {%,for %Sf(x) <éfori = 1,2}
1, f(x)=1
0,for 0 < f(x) <
1 forf(x)=>1
Similarly taking n = 2, we obtain

i-1

fo(x) = {T,for i% <f)< i fori= 1,2,,,8}
2, f(x)=2

That is,

(0 for 0 < f(x) <i\

Lfor <<t

T for T <fx)<2

\ 2forf(x)=2 J
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Similarly we can write f3(x) (x) and so on. Clearly all f, are positive whenever f is positive and also it is
clear that f, < fn+1. Moreover f, takes only a finite number of values. Therefore {f,} is a sequence of
non-negative, non decreasing functions which assume only a finite number of values.

Let us denote
Eni=f_1[i_71,%]={xEE| i_TISf(x)<é}
and
En=f"'[n.o) = {x € E|f(x) =2 n}

Both of them are measurable. Let

n2ﬂ -

f.=>] o e, +ny.  foreveryneN.

i=1

n2n -
-1 . : .
Now Z?;(En_ is measurable, since y. has been shown to be measurable and characteristic
i:]_ 1 1

function of a measurable set is measurable. Similarly y. is also measurable since . is

measurable. Hence each f, is measurable. Now we prove the convergence of this sequence.

Let f(x) < co. That is f is bounded. Then for some n we have

i-1 i
wSf) <z

i-1 i-1 i—-1 i
w o S <a

271
i—1 i
= 0 Sf(X) - Z_n < 2_’”‘
- 0 <f(x) - fa(x) < 5 (by the def of , (x))
- fx) < fo (X) < &

or|f(x) — fn(x)] Szin< evn=>mand x € E.

since m does not depend upon point.

Therefore, convergence is uniform.

Let us suppose now that f is not bounded. Then f(x) = oo
= f(x) >n foreveryn € N

Butfn (X) =n

= lim fo(x) = o0 = f(x).
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When we do not assume non-negativeness of the function then since we know that f and f

are both non-negative, we have by what we have proved above

f

lim g, () ()

iﬂﬁ@%m (ii)
where @,,'(x) and @,,"' (x) are simple functions. Also we have proved already that
f=f —f"
Now from (i) and (ii) we have
f—f~ = limg () —limg,"()
= lim(g,(x) - ¢, "(x))
= limg, (x)

(since the difference of two simple functions is again a simple function). Hence the theorem.

We now introduce the terminology “almost everywhere” which will be frequently used in the Sequel.
2.27 Definition. A statement is said to hold almost everywhere in E if and only if it holds
everywhere in E except possibly at a subset D of measure zero.

(&) Two functions f and g defined on E are said to be equal almost everywhere in E iff
f(x) =g(x) everywhere except a subset D of E of measure zero.
(b) A function defined on E is said to be continuous almost everywhere in E if and only
if there exists a subset D of E of measure zero such that f is continuous at every point of ELID.

2.28 Theorem. (a) If f is a measurable function on the set E and E; S Eis measured set, then f is a
measurable function on E;.

(b) If fis a measurable function on each of the sets in a countable collection{E; } of disjoint measurable
sets, then f is measurable.

Proof. (a) For any real a, we have {x € E;, f(X) > a } = { X €E; f(X) > a } NE1. The result follows as
the set on the right-hand side is measurable.

(b)Write E = U E. , Clearly, E, being the union of measurable set is measurable. The result now
i=1

follows, since for each real a, we have

E={xeEf(x)>a}={xel JE fx)>a}

i=1
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2.29 Theorem. Let f and g be any two functions which are equal almost everywhere in E. If f is
measurable so is g.

Proof. Since f is measurable, for any real, the set {x | f(x) > } is measurable. We shall show that the set
{x | g(x) > }is measurable. To do so we put

Ei={x|f(x)> }and E> = {x| g(X) > a }. Consider the sets
E:-E>and E» - Es.

“x€E —E,=x€Eandx & E,

These are subsets of {x: f(x) # g(x)} ) > a,g(x) » a = f(x) # g(x)

Butf=ga.e.

= mix:f(x) # g(x)} =0
Ey —E, S {x: f(x) # g(x)}
M(E; — Ez) <mf{x: f(x) # g(x)} =0
= m(E; —E,)<0Butm(E; — E;)>0
= m(E; —E;)=0
Similarly m(E, — E;) =0
~M(E; —E;) =0=m(E; — Ey)
= (E; — E;) and (E, — E;) are measurable.
= Ex=[E1U(E2-E1)]-(E1-E2)

Since E1, E2-Eiand ( E1 - E2)© are measurable therefore it follows that E2 is measurable. Hence the
theorem is proved.

2.30. Corollary. Let {fn} be a sequence of measurable functions such that lim f = f almost

n—oo

everywhere. Then f is a measurable function.

Proof. We have already proved that if {f,} is a sequence of measurable functions then lim f  is

n—ow

measurable. Also, it is given that lim f = f a.e. Therefore, using the above theorem, it follows that f is

nN—oo

measurable.
2.31 Definition: (Restriction of f to E1)

Let f be a function defined on E, then the function f; defined on E; contained in E .i.e., E1 € E by fi(x) =
f(x), x € Eq is called restriction of f to E; and denoted by f/ E:.

2.32 Exercise : Let f be a measurable function defined on E, then its restriction to E1 is also
measurable where Ei is a measurable subset of E.

Solution : Let fy =/ Ey i.e., fy is restriction of f to E;.
Let a be any real number.

{XeE fixX)>a}={x€EfX)>a} [~ f1 = f on E;]
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={ x €E: f(x) > a } N Ei1is measurable on E and E; is also measurable and
intersection of measurable sets is measurable. Hence f1 is measurable on Ex.

2.33Exercise:Let f be a measurable function defined on where E; and E, are measurable.

Then the function f is measurable on E,UE, iffEL andEL are measurable.
1 2

Solution: Let f1 = f/ E; and Let f, = f/ E>
LetE = E,UE,

Clearly E is measurable because E; and E, are measurable. Suppose f is measurable on E then by
previous exercise f1 is measurable on E; and f, is measurable on Eo.

Conversely, Let @ be any real number.

Therefore

{XeE:f(X)>a}={x€ EUE,:f(X)>a }
={x€Eif(X)>a}Uu{x€EExrf(X)>a}
={x€E1fiX) > a U { X €EEx: f2(X) > a }

because f1 is measurable on E1 and f2 is measurable on Ea.

= fis measurable on E = E,UE,.
2.24 Theorem. If a function f is continuous almost everywhere in E, then f is measurable.
Proof. Since f is continuous almost everywhere in E, there exists a subset D of E with m*D =0
such that f is continuous at every point of the set C = E-D.
To prove that f is measurable, let a denote any given real number.
Consider the set {x €E | f(x) > } = B(say)
We have to show that B is measurable. If B N\C = ¢, then B € D.
m*(B) <m*(D)=0.

m*(B) = 0.
B is measurable.
Now suppose that B NC # ¢. For this purpose, let x denote an arbitrary point in B NC. Then x €
Band x € C =f(x) > a and f is continuous at x. Hence there exists an open interval Ux
containing X such that f(y) > a hold for every point yof EnUx. Let U =U,epnc Ux-
Since x EE NUx cB holds for every x eB NC, we have
B NCcE nUx cB. This implies B = (E nU) u(B ND). As an open subset of R, U is
measurable. Hence E NU is measurable. On the other hand, since m*(BND) <m*D =0 ,BND is
also measurable. This implies that B is measurable. This completes the proof of the theorem.
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2.25 Littlewood’s three principles of measurability
The following three principles concerning measure are due to Littlewood.
First Principle. Every measurable set is a finite union of intervals.

Second Principle. Every measurable function is almost a continuous function.
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Third Principle. If {f,} is a sequence of measurable function defined on a set E of finite measure and if
fn (X) =f(x) on E, then f, (X) converges almost uniformly on E.

First of all we consider third principle. We shall prove Egoroff’s theorem which is a slight modification
of third principle of Littlewood’s.

2.26 Theorem. Let E be a measurable set with finite measure and {f,} be a sequence of measurable
functions defined on a set E such that

fn (X) =f(X) for each x € E.

Then given £ >0 and 8 > 0, there corresponds a measurable subset A of E with m(A) < é and an
integer N such that |f,,(x) — f(x)|< eVx €E—-Aandn = N.

Proof: Consider the sets G, = {x € E:|f,(x) — f(x)| = &}
Now since f, and f are measurable.
So the sets G,,'s are also measurable.
Now define E, = Up—i Gn-

={x:x € G, for somen = k}

={x:x €E,|fp(x) — f(x)| = € for somen = k}
We observe that E,,; € Ej.
On the contrary, we assume that for each x € E,V k.
Then for any fixed given k, we must have

Er ={lfh,(x) — f(x)| = € for somen = k}

But this leads to f;,,(x) »f(x). a contradiction.
Hence for each xX€ E there is some Ej suchthat x € E;, = N}, Ex =0

Now measure of E is finite, so by proposition of decreasing sequence, we have

[0e]

lim m(E,) =m (ﬂ En) —m(@) =0

n=1
1{1_{{)10 m(E,) = 0.
Hence given § > 0, 3 an integer N such that m(E,) < Vv k > N.
In particular putk =N
m(E,) < 6
m{x:x €E,|f,(x) — f(x)| = efor somen = N} < §
If we write A = E,,, then m(A) < § and
E-A={x:x € E,|f,(x) — f(x)| < efor alln = N}
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In other words,
lfu(x) — f(x)| <eforalln=Nand x eE — A
This completes the proof.

2.27 Definition: A Sequence {fn} of functions defined on a set E is said to converge almost everywhere
tofif limf (x)=f(x) Vx € E—E; whereE; C E,

m(E;) = 0.

2.28 Theorem. Let E be a measurable set with finite measure and {fn} be a sequence of measurable
functions converging almost everywhere to a real valued function f defined on a set E. Then given
>0 and § > 0, there corresponds a measurable subset A of E with m(A) < é and an integer N
such that |[f,(x) — f(x)| < eVx €EE—Aandn > N.

Proof: Let F be a set of points of E for which f,,(x) »f. Then m(F) = 0.
Since f, (X) =f(x) almost everywhere, then
fn(X) >f(X) Vx € E — F = E;(say)

Now applying the last theorem for the set E;, we get a set A1 € E1 with m(A1) < § and an integer N
such that |f,(x) — f(x)| < eVx €E;—Ajandn > N.

Now the required result follows if we take
A = A, UF as shown below.
m(A) =m(A; UF) =m(4,) + m(F) =m(4,)) +0=m(4,) <&
AlSOE —A=E—-(A4,UF)=En (4, UF)¢
=ENA“NFS =(ENF)NAS
=(E-F)NA‘=E NA, =E — A,
e, E-A=E, — A

Hence we have found a set A € E with m(A) < § and an integer N such that |f,,(x) — f(x)| < eV x €
E—Aandn > N.

2.29 Definition: A Sequence {fn} of functions is said to converge almost uniformly everywhere to a
measurable function f defined on a measurable set E if for each € >0, 3 a measurable set A € E with
m(A) < e such that and an integer N such that f,, converges to f uniformly on E — A.

2.30 Theorem.(Egoroff’s Theorem). Let {fn} be a sequence of measurable functions defined on a set E
of finite measure such that f, (x) —f(x) almost everywhere. Then to each n> 0 there corresponds a
measurable subset A of E such that m (A) <7 such that fn(x) converges to f(x) uniformly on E-A.

Proof. Applying last theorem withe = 1,6 = 77/2

We get a measurable subset A1S E with m (Az) < 77/2 and positive integer N1 such that
|fn(x) —f(x)| <1foralln>=N,and x € E;(=E — A;)

Again taking & = % 5= 77/22
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We get another measurable subset A>< E1 with m (Az) < 77/22 and positive integer N2 such that

1
|fu(x) — f(x)] < > foralln> N, and x € E,(= E; — A;)
Continuing like that at kth stage, we get a measurable subset AkS Ek.1 with

m (Ax) < n/zk and positive integer N such that

1
|fu(x) — f(x)] < " foralln > Ny and x € Ei.(= Ex_1 — Ag)

Now we set A = Up—; Ak

Then we have

M(A) < Ty mA) < 2o g = 0. Bz =1

Also E-A = E- Ug Ak = NilEx-1 — Akl = Ny Ex[ Ex—1 — A = Ey]
Letx € E — A,thenx € E,V k and so |f,(x) — f(x)]| < %Vn > Ny.

Choose k such that% < &£ so that we get

lfu(x) — f(x)|<eVx€E—Aandn = N, = N.
This completes the proof of the theorem.

Now we pass to the second principle of Littlewood. This is nothing but approximation of measurable
functions by continuous functions. In this connection we shall prove the following theorem known as
Lusin Theorem after the name of a Russian Mathematician Lusin, N.N.

2.31 Lusin Theorem: Let f be a measurable real valued function defined on closed interval [a,b],
then given 8 > 0,3 a continuous function g on [a, b|such that

mix: f(x) # g(x)} <9.
Proof: First we prove two lemmas.

Lemma 1. Let F be a closed subset of R, then a function g: F— R is continuous if sets {x: g(x) <
a} and {x: g(x) = b} are closed subsets of F for every rational a and b.

Proof: Let {x: g(x) < a} and {x: g(x) = b} are closed subset of F.
= {x: g(x) > a} n {x: g(x) < b} is open subset of F.

de., {x:a < g(x) < b}isopen.

i.e., {x:g(x) € (a,b)}isopeninF.

i.e.,, g71(a,b)is openinF.

Let O be any open set in R then O can be written as countable union of disjoint open intervals with
rational end points.
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Let O = Up=,(an, by)

Then g=10 = g~ (UpZ1(@n, bn)) = Urz1 9~ (an, bn)

Since g~1(a, b)is open and countable union of open set is open.

= g~ 1(0) is open = g is continuous.

Lemma 2. Let f. [a, b] —>R be a measurable function, then
6 > 0,3 aclosed subset F of E = [a,b]suchthat m(E —F) < § and%is continuous.
Proof: Let {r;,} be a sequence of all rational numbers.

Forne N, take 4,, = {x: f(x) =1}

And A, = {x: f(x) < 1}

Clearly each 4,, andA,,” are measurable [ f is measurable]

Then 3 closed sets B, ¢ A,, and B, c A,," such that

and m(4,," — B,") <

m(4, — B,) < n 3

2n.3
LetD = [U?lo=1(An - Bn)] U [U?Lo=1(An* - Bn*)]
Clearly D is measurable.

Therefore m(D) < Yo, m(4,, — B,) + Yoy m(4," — B,")

o _6 w _6
m(D) < 211:1 2n 3 + ZTl:l 2n3
6,5 _2
3 3 3
26

Now E and D are measurable.

= E-D is measurable.
Then for given § > 0,3 a closed set F € E — D suchthat m(E — D — F) < g
Now E-F =DuU (E — F — D)
2 mEF) =mD)+mE-F-D)<Z+2= 6
Leth=f/F
To show that h is continuous on F.
For rational number 7;,,

{x:h(x)<n}={x:f(x) <m}NF
=4,"nF=[(4,"-B,)YUB,)|nF
=[((4x" =B, ) NnF)|U[B, nF]
=@ U |[B,” NF]
=B,"NF

given
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O(An - By) D(An* - B,")
n=1 n=1

= (An* _Bn*) cD
wFCE-D=FnD=0.
{x:h(x) <n}=B,"NF

D= U

Since B,," is closed in E = [a, b].
B, NFisclosedinF.
= {x:h(x) < n,}isclosed inF.
By lemma 1, h is continuous.
So f/F is continuous.
Lusin Theorem:(Proof):- We have

f:[a, b]— R is measurable function, then by lemma(2), for given § > 0,3 a closed set F C E
such that m(E —F) < §and h = %is continuous.

Now using result “Every real valued continuous function defined on a closed subset of a real
number can be extended continuously to all real numbers.”
So h can be extended to continuous function h*: R— R.
Let g :[a, b]— R, g is continuous
T and forx € F,g(x) = f(x)on F.
and{x €EE:f(x) # g(x)} S E—-F
m{x €E:f(x) # g(x)} <m(E —F) <8.

“Convergence in Measure”

The notion of convergence in measure is introduced by F.Reisz and E.Fisher in 1906-07.
Sometimes it is also called approximate convergence.

2.32 Definition. A sequence < f, > of measurable functions is said to convergence in measure to f on a
set E, written as f;, 3f onE,

If given 6>0, 3m € N such that forall n > m, we have
mix||f(x) = fu()| = €} < 6.
Or lim m{x||f(x) — fu(x)| = €} =0
n—->0o
This means that for all sufficiently large value of n, functions f,, of the sequence < fn > differ from the

limit function f by a small quantity with the exception of the set of point whose measure is arbitrary
small (<9).

2.33 Theorem: If sequence {f,} converges in measure to the function f, then it converges in
measure to every function g which is equivalent to the function.

Proof: For each £ > 0, we have

i lfn() =gl 2 &}  {x: f(x) # g}V {x: |fo(x) = fF(O)] = €}
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Since g is equivalent to f, then we have
mix: f(x) # g(x)} = 0.

mix: |fo(x) — g0 2 e} < mfx: f(x) # g0} + mlx: [fo(x) = f(x)| = €}
s mix: |fu(x) = f(x) 2 €} <6

m
=fn—g
Hence the result.

2.34 Theorem: If sequence {f,} converges in measure to the function f, then the limit function f is
unique a.e.

Proof: Let g be another function such that f,, ﬁg.

Since |[f — gl < |f — ful + | — gl
Now we observe that for each € > 0,

(e lf@) = 900l 2 &) € (1,00 - Fl 2 S} U {1, - 900l 2 5

Since by proper choice of &, the measure of both the sets on the right can be made arbitrary small, we
have

mix: |f(x) = g(0)| = €}=0

= f =g almost everywhere. Hence the proof.
2.35 Theorem: Let {f,} be a sequence of measurable functions which converges to f a.e. on

X. Then f, = f on X.
Proof: For each ne N and € > 0, Consider the sets
Sn(e) = {x € X:[fu(x) — f(x)| = €}

Let 6 > 0 be any arbitrary number, then 3a measurable set A c X
With m(A) < & and the number N such that

Ifn(x) —f(x)|<evxeX—-—Aandn=N
Then it follows that S,,(¢) c AVn >N
m(S,(e)) <m(A) < 6vn=N
lim ‘m(S,(e)) = 0

Hencef,, T)f on X.

2.36 Remark: The converse of the above theorem need not be true i.e, convergence in measure is
more general than a.e. infact there are sequence of measurable functions that converges in
measure but fails to converge at any point.
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To affect we consider the following example
fn:10,1] > Ras

1ifxe k k+1]
fn(x) = { X E |50
0,otherwise
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Letn=k + 2t where 0 < k < 2¢.

Let € > 0 be given. Choose an m € N such that % <¢

Then m{x: |f,,(x) — 0] = €} = m{x: |f,,| = €}

11 [tm=k+2t <2t 428
<= ¢ 1 2 ™
2t " on <220, <=

2 n

2
<—<eVn=>2m
m

= f, converges in measure to zero for Xe [0, 1]

2 i f,5[0,1]
fn (x) has value 1 for arbitrary large value of n and so it does not converge to zero a.e. because
on taking n very large, we get 2 large and hence number of subintervals of type (*) increase and
possibility of f,,(x) = 1 is more.

2.37 Theorem (F. Riesz). “Let < fn > be a sequence of measurable functions which converges in
measure to f. Then there is a subsequence < f;, > of < fn > which converges to f almost
everywhere.”

Proof. Let f, ﬁf.

Let us consider two sequences {%} and {zin} of real numbers such that
1 - 1
;—>0asn—>ooas 2—n=1<00.

n=1
We now choose a strictly increasing sequence {n; } of positive integer as follows
Let n, be a positive integer such that
1
m({x: |fn1(x) - f(x)| > 1}) < 3
Such a number n, exists since in view f, ﬁf foragivene; =1 > 0 and

61 = EPN 0,3 an integer nysuch that
2

1
m({: () — f@I 2 1) <5vnzm
In particular for n = n;.

Similarly, Let n, be a positive number such that n, > n, and

m ({x: |fn2 ()= f()| = %}) < Ziz and so on.

Continuing in this process, we get the positive numbern;, > n;,_;

m({x: |fnk(x) —f(x)| > %}) < Zlk
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Now set Ex = U2, {x: |fo, () = (0| = l}k €N.
Then it is clear that {E } is decreasing sequence of measurable sets.
Therefore m(E) = zlim m(Ey)
But m(E,) =m {U;”zk {x: |fni(x) —f)| = %}}
0 1
< e emix:|f, (0 - f()] 2 3}
<Z‘l?‘;k%—>0ask—>00

1
- 2k—-1

Hence m(E) = 0.

Thus it remains to be verified that the sequence < f,,, > converges to f on X-E.

So let x, & E. Then x, & E,,, for some positive integer m.

i.e., x, & {x: |/ ) — f(0)] = %},k >m

1
= [fu () = fOO| <7k zm
But% — 0ask— oo
Hence zlim o (X0) = £ (x0).

Since x, € X — E was arbitrary, it follows that

lim fy, () = f(x) for each x € X — E and s0 {fn,} converges to f a.e.

This completes the proof.





